高分辨率透射电子显微镜
师(数学)
相(物质)
人工智能
材料科学
模式识别(心理学)
Crystal(编程语言)
计算机科学
纳米技术
物理
数学
透射电子显微镜
算术
量子力学
程序设计语言
作者
Quan Zhang,Liang Yang,Ru Bai,Bo Peng,Yangyi Liu,Chang Duan,Chao Zhang
出处
期刊:Micron
[Elsevier]
日期:2024-05-28
卷期号:184: 103665-103665
标识
DOI:10.1016/j.micron.2024.103665
摘要
The High Resolution Transmission Electron Microscope (HRTEM) images provide valuable insights into the atomic microstructure, dislocation patterns, defects, and phase characteristics of materials. However, the current analysis and research of HRTEM images of crystal materials heavily rely on manual expertise, which is labor-intensive and susceptible to subjective errors. This study proposes a combined machine learning and deep learning approach to automatically partition the same phase regions in crystal HRTEM images. The entire image is traversed by a sliding window to compute the amplitude spectrum of the Fast Fourier Transform (FFT) in each window. The generated data is transformed into a 4-dimensional (4D) format. Principal component analysis (PCA) on this 4D data estimates the number of feature regions. Non-negative matrix factorization (NMF) then decomposes the data into a coefficient matrix representing feature region distribution, and a feature matrix corresponding to the FFT magnitude spectra. Phase recognition based on deep learning enables identifying the phase of each feature region, thereby achieving automatic segmentation and recognition of phase regions in HRTEM images of crystals. Experiments on zirconium and oxide nanoparticle HRTEM images demonstrate the proposed method achieve the consistency of manual analysis. Code and supplementary material are available at https://github.com/rememberBr/HRTEM2.
科研通智能强力驱动
Strongly Powered by AbleSci AI