HF-Mid: A Hybrid Framework of Network Intrusion Detection for Multi-type and Imbalanced Data

计算机科学 入侵检测系统 人工智能 数据挖掘 分类器(UML) 模式识别(心理学) 人工神经网络 机器学习
作者
Weidong Zhou,Tianbo Wang,Guotao Huang,Xiaopeng Liang,Chunhe Xia,Xiaojian Li
标识
DOI:10.1109/trustcom60117.2023.00211
摘要

The data-driven deep learning methods have brought significant progress and potential to intrusion detection. However, there are two thorny problems caused by the characteristics of intrusion data: "multi-type features" and "data imbalance". The former means that forcefully and improperly transforming intrusion features from distinct metric spaces can result in semantic loss and noise. The latter indicates that the intrusion data is imbalanced in quantity and quality due to its complex spatial distribution. We propose a Hybrid Framework for Multi-type and Imbalance Data (HF-Mid) to address the above two problems. Firstly, we divide the intrusion features into equivalent and non-equivalent groups, and then embed them sequentially using Supervised Paragraph Vector-Distributed Memory (SPV-DM), which excels at modeling co-occurrence relationships, and Deep Neural Network (DNN), which is suitable for modeling non-linear relationships, thereby solving the "multitype features" problem. Secondly, we adopt a low-noise collective matrix factorization (CMF) model to fuse the two obtained features for dimensionality reduction. Finally, we employ a multiple classifier to detect intrusion. During the classifier training stage, we design a genetic algorithm-based proportional sampling method to select high-quality samples in each training batch. thus addressing the "data imbalance" problem. The experimental results demonstrate the proposed framework exhibits an overall improvement of 5.9% and 1.5% in terms of accuracy and false positive rate on average, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的白猫应助路旁小白采纳,获得20
1秒前
鱼儿完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
ewmmel发布了新的文献求助10
4秒前
5秒前
what发布了新的文献求助10
6秒前
谢志超发布了新的文献求助10
7秒前
慕青应助yulee采纳,获得10
7秒前
星星有泪发布了新的文献求助10
8秒前
人文发布了新的文献求助10
8秒前
9秒前
风雨无阻发布了新的文献求助10
9秒前
10秒前
10秒前
谭凯文发布了新的文献求助10
11秒前
11秒前
12秒前
chu发布了新的文献求助10
12秒前
13秒前
lily完成签到 ,获得积分10
13秒前
芯止谭轩发布了新的文献求助20
14秒前
15秒前
junzilan完成签到,获得积分10
15秒前
16秒前
AU发布了新的文献求助10
17秒前
请叫我鬼才完成签到,获得积分10
19秒前
yulee发布了新的文献求助10
20秒前
风中绝悟完成签到,获得积分10
23秒前
23秒前
清新的音响完成签到 ,获得积分10
23秒前
24秒前
欢呼的汉堡完成签到,获得积分10
25秒前
chu完成签到,获得积分10
26秒前
姚语蓉发布了新的文献求助10
27秒前
芯止谭轩完成签到,获得积分10
31秒前
难过的箴完成签到 ,获得积分10
31秒前
彭于晏应助殷勤的灵凡采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559805
求助须知:如何正确求助?哪些是违规求助? 3134281
关于积分的说明 9406327
捐赠科研通 2834314
什么是DOI,文献DOI怎么找? 1558059
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522