Multitask Weakly Supervised Generative Network for MR-US Registration

计算机科学 人工智能 图像配准 试验装置 豪斯多夫距离 磁共振成像 超声波 计算机视觉 深度学习 基本事实 生成模型 模式识别(心理学) 生成语法 图像(数学) 放射科 医学
作者
Mohammad Farid Azampour,Kristina Mach,Emad Fatemizadeh,Beatrice Demiray,Kay Markus Westenfelder,Katja Steiger,Matthias Eiber,Thomas Wendler,Bernhard Kainz,Nassir Navab
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3400899
摘要

Registering pre-operative modalities, such as magnetic resonance imaging or computed tomography, to ultrasound images is crucial for guiding clinicians during surgeries and biopsies. Recently, deep-learning approaches have been proposed to increase the speed and accuracy of this registration problem. However, all of these approaches need expensive supervision from the ultrasound domain. In this work, we propose a multitask generative framework that needs weak supervision only from the pre-operative imaging domain during training. To perform a deformable registration, the proposed framework translates a magnetic resonance image to the ultrasound domain while preserving the structural content. To demonstrate the efficacy of the proposed method, we tackle the registration problem of pre-operative 3D MR to transrectal ultrasonography images as necessary for targeted prostate biopsies. We use an in-house dataset of 600 patients, divided into 540 for training, 30 for validation, and the remaining for testing. An expert manually segmented the prostate in both modalities for validation and test sets to assess the performance of our framework. The proposed framework achieves a 3.58 mm target registration error on the expert-selected landmarks, 89.2% in the Dice score, and 1.81 mm 95th percentile Hausdorff distance on the prostate masks in the test set. Our experiments demonstrate that the proposed generative model successfully translates magnetic resonance images into the ultrasound domain. The translated image contains the structural content and fine details due to an ultrasound-specific two-path design of the generative model. The proposed framework enables training learning-based registration methods while only weak supervision from the pre-operative domain is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
小杭776应助壮观的菠萝采纳,获得10
1秒前
某某某完成签到 ,获得积分10
1秒前
乐观的从云完成签到,获得积分10
4秒前
6秒前
8秒前
tigger发布了新的文献求助20
9秒前
Driscoll完成签到 ,获得积分10
10秒前
吃的饱饱呀完成签到 ,获得积分10
11秒前
11秒前
小南极完成签到,获得积分10
11秒前
深情安青应助孤独的根号3采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
别叫我吃饭饭饭完成签到 ,获得积分10
14秒前
Jabowoo完成签到,获得积分10
14秒前
ZHI发布了新的文献求助10
16秒前
hua完成签到,获得积分10
16秒前
lu完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
奋斗的若烟完成签到,获得积分10
20秒前
李爱国应助灰灰采纳,获得10
22秒前
24秒前
直率心锁完成签到,获得积分10
26秒前
26秒前
传统的寒凝完成签到,获得积分10
26秒前
洋洋完成签到 ,获得积分10
27秒前
27秒前
科研通AI6.1应助ZHI采纳,获得10
27秒前
爱吃香菜的哆啦A梦完成签到,获得积分10
28秒前
清爽的毛衣完成签到,获得积分10
28秒前
28秒前
滴滴如玉完成签到,获得积分10
28秒前
29秒前
29秒前
别闹闹完成签到 ,获得积分10
29秒前
糕糕完成签到 ,获得积分10
30秒前
xmhxpz完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765051
求助须知:如何正确求助?哪些是违规求助? 5558090
关于积分的说明 15407090
捐赠科研通 4899903
什么是DOI,文献DOI怎么找? 2636091
邀请新用户注册赠送积分活动 1584299
关于科研通互助平台的介绍 1539596