Multitask Weakly Supervised Generative Network for MR-US Registration

计算机科学 人工智能 图像配准 试验装置 豪斯多夫距离 磁共振成像 超声波 计算机视觉 深度学习 基本事实 生成模型 模式识别(心理学) 生成语法 图像(数学) 放射科 医学
作者
Mohammad Farid Azampour,Kristina Mach,Emad Fatemizadeh,Beatrice Demiray,Kay Markus Westenfelder,Katja Steiger,Matthias Eiber,Thomas Wendler,Bernhard Kainz,Nassir Navab
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3400899
摘要

Registering pre-operative modalities, such as magnetic resonance imaging or computed tomography, to ultrasound images is crucial for guiding clinicians during surgeries and biopsies. Recently, deep-learning approaches have been proposed to increase the speed and accuracy of this registration problem. However, all of these approaches need expensive supervision from the ultrasound domain. In this work, we propose a multitask generative framework that needs weak supervision only from the pre-operative imaging domain during training. To perform a deformable registration, the proposed framework translates a magnetic resonance image to the ultrasound domain while preserving the structural content. To demonstrate the efficacy of the proposed method, we tackle the registration problem of pre-operative 3D MR to transrectal ultrasonography images as necessary for targeted prostate biopsies. We use an in-house dataset of 600 patients, divided into 540 for training, 30 for validation, and the remaining for testing. An expert manually segmented the prostate in both modalities for validation and test sets to assess the performance of our framework. The proposed framework achieves a 3.58 mm target registration error on the expert-selected landmarks, 89.2% in the Dice score, and 1.81 mm 95th percentile Hausdorff distance on the prostate masks in the test set. Our experiments demonstrate that the proposed generative model successfully translates magnetic resonance images into the ultrasound domain. The translated image contains the structural content and fine details due to an ultrasound-specific two-path design of the generative model. The proposed framework enables training learning-based registration methods while only weak supervision from the pre-operative domain is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzc完成签到 ,获得积分10
1秒前
4秒前
xushanqi发布了新的文献求助10
4秒前
全鑫发布了新的文献求助10
5秒前
吕jdjshs完成签到,获得积分10
5秒前
布布完成签到 ,获得积分10
5秒前
6秒前
小鲨鱼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
撒西不理发布了新的文献求助10
9秒前
BowieHuang应助doudou采纳,获得10
11秒前
小张完成签到 ,获得积分10
11秒前
脑洞疼应助熊国开采纳,获得10
12秒前
科研通AI6.1应助樊书南采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
深情安青应助冷酷的听兰采纳,获得10
14秒前
吕jdjshs发布了新的文献求助10
14秒前
HU-Li发布了新的文献求助10
14秒前
顾矜应助听风采纳,获得10
16秒前
碲化材料完成签到,获得积分10
16秒前
18秒前
19秒前
年轻的浩然完成签到,获得积分10
19秒前
LILI发布了新的文献求助10
20秒前
JamesPei应助123xmc采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
渐变映射发布了新的文献求助10
23秒前
如意安青完成签到,获得积分10
24秒前
隐形曼青应助淡定嘉懿采纳,获得10
24秒前
平常破茧完成签到 ,获得积分10
25秒前
Tracy完成签到,获得积分10
25秒前
naru完成签到,获得积分10
25秒前
李健应助缥缈的忆山采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
星辰大海应助渐变映射采纳,获得10
26秒前
sufeisunny发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777946
求助须知:如何正确求助?哪些是违规求助? 5636955
关于积分的说明 15447363
捐赠科研通 4909880
什么是DOI,文献DOI怎么找? 2642001
邀请新用户注册赠送积分活动 1589890
关于科研通互助平台的介绍 1544374