Multitask Weakly Supervised Generative Network for MR-US Registration

计算机科学 人工智能 图像配准 试验装置 豪斯多夫距离 磁共振成像 超声波 计算机视觉 深度学习 基本事实 生成模型 模式识别(心理学) 生成语法 图像(数学) 放射科 医学
作者
Mohammad Farid Azampour,Kristina Mach,Emad Fatemizadeh,Beatrice Demiray,Kay Markus Westenfelder,Katja Steiger,Matthias Eiber,Thomas Wendler,Bernhard Kainz,Nassir Navab
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3400899
摘要

Registering pre-operative modalities, such as magnetic resonance imaging or computed tomography, to ultrasound images is crucial for guiding clinicians during surgeries and biopsies. Recently, deep-learning approaches have been proposed to increase the speed and accuracy of this registration problem. However, all of these approaches need expensive supervision from the ultrasound domain. In this work, we propose a multitask generative framework that needs weak supervision only from the pre-operative imaging domain during training. To perform a deformable registration, the proposed framework translates a magnetic resonance image to the ultrasound domain while preserving the structural content. To demonstrate the efficacy of the proposed method, we tackle the registration problem of pre-operative 3D MR to transrectal ultrasonography images as necessary for targeted prostate biopsies. We use an in-house dataset of 600 patients, divided into 540 for training, 30 for validation, and the remaining for testing. An expert manually segmented the prostate in both modalities for validation and test sets to assess the performance of our framework. The proposed framework achieves a 3.58 mm target registration error on the expert-selected landmarks, 89.2% in the Dice score, and 1.81 mm 95th percentile Hausdorff distance on the prostate masks in the test set. Our experiments demonstrate that the proposed generative model successfully translates magnetic resonance images into the ultrasound domain. The translated image contains the structural content and fine details due to an ultrasound-specific two-path design of the generative model. The proposed framework enables training learning-based registration methods while only weak supervision from the pre-operative domain is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xgx984完成签到,获得积分10
3秒前
来日可期完成签到,获得积分10
4秒前
月不笑发布了新的文献求助10
8秒前
zeyin完成签到,获得积分10
8秒前
科研通AI2S应助林波er采纳,获得10
9秒前
舒伯特完成签到 ,获得积分10
9秒前
11秒前
生动映容完成签到 ,获得积分10
12秒前
喜悦的虔发布了新的文献求助10
16秒前
Moonber完成签到,获得积分10
16秒前
不爱吃韭菜发布了新的文献求助200
16秒前
洁洁3323发布了新的文献求助10
18秒前
21秒前
24秒前
思源应助喜悦的虔采纳,获得10
24秒前
26秒前
uwasa发布了新的文献求助10
30秒前
思源应助月不笑采纳,获得10
31秒前
含糊的尔槐应助yao采纳,获得200
32秒前
stars发布了新的文献求助10
32秒前
justsayit完成签到 ,获得积分10
35秒前
FlightAttendant完成签到 ,获得积分10
37秒前
38秒前
41秒前
42秒前
学术小天才完成签到 ,获得积分10
44秒前
44秒前
cicy发布了新的文献求助10
45秒前
aabbc完成签到,获得积分10
45秒前
霸气的依秋应助moon采纳,获得30
47秒前
月不笑发布了新的文献求助10
48秒前
48秒前
林波er发布了新的文献求助10
48秒前
49秒前
洁洁3323完成签到,获得积分10
49秒前
可靠背包完成签到,获得积分20
49秒前
繁荣的易真完成签到,获得积分10
50秒前
kjlee完成签到,获得积分0
50秒前
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359603
求助须知:如何正确求助?哪些是违规求助? 2982349
关于积分的说明 8703179
捐赠科研通 2664017
什么是DOI,文献DOI怎么找? 1458777
科研通“疑难数据库(出版商)”最低求助积分说明 675241
邀请新用户注册赠送积分活动 666331