Intelligent Sensing of Thermal Error of CNC Machine Tool Spindle Based on Multi-Source Information Fusion

人工神经网络 机械加工 计算机科学 机床 信息融合 数控 传感器融合 人工智能 特征(语言学) 工程类 模式识别(心理学) 机械工程 语言学 哲学
作者
Zeqing Yang,Beibei Liu,Yanrui Zhang,Yingshu Chen,Hongwei Zhao,Guofeng Zhang,Yi Wei,Zonghua Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (11): 3614-3614 被引量:2
标识
DOI:10.3390/s24113614
摘要

Aiming at the shortcomings of single-sensor sensing information characterization ability, which is easily interfered with by external environmental factors, a method of intelligent perception is proposed in this paper. This method integrates multi-source and multi-level information, including spindle temperature field, spindle thermal deformation, operating parameters, and motor current. Firstly, the internal and external thermal-error-related signals of the spindle system are collected by sensors, and the feature parameters are extracted; then, the radial basis function (RBF) neural network is utilized to realize the preliminary integration of the feature parameters because of the advantages of the RBF neural network, which offers strong multi-dimensional solid nonlinear mapping ability and generalization ability. Thermal-error decision values are then generated by a weighted fusion of different pieces of evidence by considering uncertain information from multiple sources. The spindle thermal-error sensing experiment was based on the spindle system of the VMC850 (Yunnan Machine Tool Group Co., LTD, Yunnan, China) vertical machining center of the Yunnan Machine Tool Factory. Experiments were designed for thermal-error sensing of the spindle under constant speed (2000 r/min and 4000 r/min), standard variable speed, and stepped variable speed conditions. The experiment’s results show that the prediction accuracy of the intelligent-sensing model with multi-source information fusion can reach 98.1%, 99.3%, 98.6%, and 98.8% under the above working conditions, respectively. The intelligent-perception model proposed in this paper has higher accuracy and lower residual error than the traditional BP neural network perception and wavelet neural network models. The research in this paper provides a theoretical basis for the operation, maintenance management, and performance optimization of machine tool spindle systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助七七采纳,获得10
刚刚
BacktoDeutsche完成签到,获得积分10
1秒前
1秒前
怡欢愉发布了新的文献求助10
2秒前
shishikai发布了新的文献求助10
3秒前
4秒前
4秒前
sily科研完成签到,获得积分10
5秒前
汉堡包应助么么叽采纳,获得10
6秒前
6秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
阿布发布了新的文献求助30
10秒前
儒雅晓霜发布了新的文献求助10
10秒前
害怕的果汁完成签到,获得积分10
12秒前
糖糖发布了新的文献求助10
12秒前
12秒前
xhjh03发布了新的文献求助10
13秒前
ee完成签到,获得积分10
14秒前
行走的车发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
yyj完成签到,获得积分10
16秒前
思源应助瘦瘦白薇采纳,获得10
16秒前
愤怒的卓越完成签到,获得积分10
18秒前
七七发布了新的文献求助10
19秒前
ee发布了新的文献求助10
21秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752665
求助须知:如何正确求助?哪些是违规求助? 3296193
关于积分的说明 10093127
捐赠科研通 3011126
什么是DOI,文献DOI怎么找? 1653604
邀请新用户注册赠送积分活动 788287
科研通“疑难数据库(出版商)”最低求助积分说明 752801