A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 数学 基因 大地测量学 化学 纯数学 地理
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier]
卷期号:144: 109778-109778 被引量:56
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太空工程师完成签到,获得积分10
1秒前
2秒前
yixia222发布了新的文献求助10
3秒前
阔叶材完成签到,获得积分10
3秒前
充电宝应助西扬采纳,获得10
4秒前
Xide完成签到,获得积分10
4秒前
科目三应助wulififi采纳,获得10
5秒前
雨后完成签到,获得积分10
6秒前
香云发布了新的文献求助10
8秒前
zero完成签到 ,获得积分10
8秒前
luofeiyu发布了新的文献求助10
9秒前
积极台灯完成签到 ,获得积分10
9秒前
laosu发布了新的文献求助10
11秒前
11秒前
染墨发布了新的文献求助10
11秒前
11秒前
小陈呀完成签到 ,获得积分10
12秒前
12秒前
ggyy应助keyan采纳,获得10
12秒前
13秒前
万能图书馆应助WRC采纳,获得10
13秒前
14秒前
打打应助xd采纳,获得10
14秒前
WHW完成签到,获得积分10
14秒前
FFFFF应助满意的世界采纳,获得10
14秒前
布丁发布了新的文献求助10
15秒前
HHN完成签到 ,获得积分10
15秒前
zcg完成签到,获得积分10
16秒前
17秒前
nostalgic发布了新的文献求助10
18秒前
诱导效应发布了新的文献求助10
18秒前
求助人员发布了新的文献求助10
18秒前
陈陈发布了新的文献求助10
19秒前
科研通AI6应助西因采纳,获得10
19秒前
上官若男应助西因采纳,获得10
19秒前
19秒前
19秒前
我是老大应助yy采纳,获得30
20秒前
22秒前
EpQAQ完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241