A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 化学 数学 大地测量学 地理 纯数学 基因
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier]
卷期号:144: 109778-109778 被引量:23
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
LHL发布了新的文献求助10
5秒前
天天快乐应助Hh采纳,获得10
5秒前
FF完成签到 ,获得积分10
6秒前
miemie完成签到,获得积分10
6秒前
科研通AI2S应助coli采纳,获得10
7秒前
Lucas应助黙宇循光采纳,获得10
8秒前
Akim应助ShangXuanyue采纳,获得10
8秒前
8秒前
Yingkun_Xu完成签到,获得积分10
8秒前
9秒前
小学生发布了新的文献求助10
10秒前
王大雨发布了新的文献求助10
10秒前
艾米发布了新的文献求助10
10秒前
CodeCraft应助英俊的胜采纳,获得10
10秒前
12秒前
13秒前
qs发布了新的文献求助10
14秒前
14秒前
14秒前
zz发布了新的文献求助10
15秒前
陳钧浩完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
ARNI完成签到,获得积分10
17秒前
irisjlj发布了新的文献求助10
17秒前
研友_Ze2V48发布了新的文献求助10
18秒前
丘比特应助倪妮采纳,获得10
18秒前
黙宇循光发布了新的文献求助10
18秒前
19秒前
九耳久知完成签到,获得积分10
19秒前
qs完成签到,获得积分10
19秒前
John完成签到 ,获得积分10
20秒前
在水一方应助苏航采纳,获得10
20秒前
yue完成签到 ,获得积分10
20秒前
yyyyxxxg完成签到,获得积分10
21秒前
ShangXuanyue发布了新的文献求助10
22秒前
cjc发布了新的文献求助10
24秒前
Orange应助irisjlj采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244