A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 化学 数学 大地测量学 地理 纯数学 基因
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:144: 109778-109778 被引量:41
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nekoleaf完成签到,获得积分10
刚刚
科研通AI5应助Zzzzan采纳,获得30
刚刚
科研通AI5应助阳光向秋采纳,获得30
1秒前
1秒前
阔达磬完成签到,获得积分10
2秒前
薛定谔的猫完成签到,获得积分10
4秒前
赘婿应助你听风在吹采纳,获得10
4秒前
辛勤易烟完成签到,获得积分10
6秒前
8秒前
nekoleaf发布了新的文献求助10
8秒前
我是老大应助安静的海角采纳,获得10
9秒前
搁浅完成签到,获得积分10
11秒前
美人鱼听不了超声波完成签到 ,获得积分10
12秒前
12秒前
12秒前
Akim应助朴素的元风采纳,获得10
13秒前
14秒前
hujushan完成签到,获得积分10
14秒前
15秒前
16秒前
友好醉波完成签到,获得积分10
16秒前
guochrn发布了新的文献求助10
17秒前
华清引完成签到,获得积分10
18秒前
18秒前
shjyang发布了新的文献求助10
18秒前
19秒前
LLL发布了新的文献求助10
20秒前
21秒前
猪猪hero应助于归采纳,获得10
22秒前
23秒前
CC发布了新的文献求助10
23秒前
24秒前
ww完成签到,获得积分10
27秒前
曾经如冬完成签到,获得积分20
28秒前
老鼠耗子完成签到,获得积分10
28秒前
MRZ发布了新的文献求助10
28秒前
CodeCraft应助dayu采纳,获得10
29秒前
小崽总完成签到,获得积分10
30秒前
鹤轸完成签到,获得积分10
30秒前
1222发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782