A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 化学 数学 大地测量学 地理 纯数学 基因
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier]
卷期号:144: 109778-109778 被引量:88
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
清晨牛完成签到,获得积分10
5秒前
科研通AI6应助比奇堡力工采纳,获得10
6秒前
6秒前
落后的嚓茶完成签到,获得积分20
6秒前
哈哈哈完成签到,获得积分20
7秒前
pose关注了科研通微信公众号
8秒前
汪蔓蔓完成签到 ,获得积分10
8秒前
哈罗发布了新的文献求助10
8秒前
jiaheyuan发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
隐形曼青应助yyx164采纳,获得10
9秒前
Revision完成签到,获得积分10
9秒前
科研通AI6应助李珅玥采纳,获得30
9秒前
10秒前
10秒前
gfjh完成签到,获得积分10
11秒前
12秒前
舒适傲白发布了新的文献求助10
12秒前
水泥酱发布了新的文献求助100
12秒前
浮游应助陶醉采纳,获得10
13秒前
薄荷味完成签到,获得积分10
13秒前
L1q完成签到,获得积分10
13秒前
无极微光应助舒适的半芹采纳,获得20
13秒前
小小Li完成签到,获得积分10
14秒前
马老师发布了新的文献求助10
14秒前
执着秋白完成签到,获得积分10
15秒前
15秒前
16秒前
sifvld完成签到,获得积分10
17秒前
18秒前
mark发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
诚心绿兰发布了新的文献求助10
20秒前
happiness发布了新的文献求助10
21秒前
21秒前
21秒前
tiptip应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039