亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 数学 基因 大地测量学 化学 纯数学 地理
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier]
卷期号:144: 109778-109778 被引量:88
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
以won完成签到,获得积分10
3秒前
安详的从筠完成签到,获得积分10
4秒前
以won发布了新的文献求助10
12秒前
Orange应助摆烂ing采纳,获得10
12秒前
20秒前
24秒前
摆烂ing完成签到,获得积分10
25秒前
Yantuobio完成签到,获得积分10
51秒前
畅快甜瓜发布了新的文献求助10
53秒前
满意的伊完成签到,获得积分10
53秒前
年鱼精完成签到 ,获得积分10
55秒前
华仔应助读书的时候采纳,获得10
57秒前
1分钟前
懵懂的莛完成签到,获得积分10
1分钟前
yydd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Lucas应助huahuahahajiu采纳,获得10
1分钟前
英勇滑板发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助自然狗采纳,获得10
1分钟前
yydd完成签到,获得积分20
1分钟前
2分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
竹修完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
赵芳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
yx发布了新的文献求助10
2分钟前
SciGPT应助信陵君无忌采纳,获得10
2分钟前
2分钟前
yx完成签到,获得积分10
3分钟前
机智元珊完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731901
求助须知:如何正确求助?哪些是违规求助? 5333980
关于积分的说明 15321767
捐赠科研通 4877719
什么是DOI,文献DOI怎么找? 2620550
邀请新用户注册赠送积分活动 1569861
关于科研通互助平台的介绍 1526352