A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 化学 数学 大地测量学 地理 纯数学 基因
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:144: 109778-109778 被引量:41
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11发布了新的文献求助10
刚刚
852应助昕昕233采纳,获得10
1秒前
古枂发布了新的文献求助30
1秒前
NexusExplorer应助不是二次元采纳,获得10
2秒前
2秒前
2秒前
lantZa发布了新的文献求助10
2秒前
3秒前
briliian完成签到,获得积分10
3秒前
caiyuedong完成签到,获得积分10
3秒前
baby3480发布了新的文献求助10
3秒前
机灵夜云发布了新的文献求助10
4秒前
负数发布了新的文献求助30
4秒前
5秒前
5秒前
咳咳发布了新的文献求助10
5秒前
FashionBoy应助zhang005on采纳,获得10
6秒前
古德赖克完成签到,获得积分10
6秒前
6秒前
LEE给LEE的求助进行了留言
7秒前
7秒前
犇骉发布了新的文献求助10
7秒前
8秒前
9秒前
pfliu完成签到,获得积分10
10秒前
10秒前
11完成签到,获得积分10
10秒前
10秒前
10秒前
jiejie发布了新的文献求助10
10秒前
优秀如雪发布了新的文献求助100
12秒前
Hover完成签到,获得积分0
13秒前
pfliu发布了新的文献求助10
13秒前
13秒前
汉堡包应助小罗同学采纳,获得10
13秒前
www发布了新的文献求助10
14秒前
格鲁特发布了新的文献求助10
15秒前
15秒前
Tim1发布了新的文献求助30
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344