亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on deep learning-based image forgery detection

计算机科学 深度学习 人工智能 稳健性(进化) 数字图像 领域(数学) 图像编辑 计算机视觉 图像处理 机器学习 水准点(测量) 图像(数学) 生物化学 化学 数学 大地测量学 地理 纯数学 基因
作者
Fatemeh Zare Mehrjardi,Alimohammad Latif,Mohsen Sardari Zarchi,Razieh Sheikhpour
出处
期刊:Pattern Recognition [Elsevier]
卷期号:144: 109778-109778 被引量:88
标识
DOI:10.1016/j.patcog.2023.109778
摘要

Image is known as one of the communication tools between humans. With the development and availability of digital devices such as cameras and cell phones, taking images has become easy anywhere. Images are used in many medical, forensic medicine, and judiciary applications. Sometimes images are used as evidence, so the authenticity and reliability of digital images are increasingly important. Some people manipulate images by adding or deleting parts of an image, which makes the image invalid. Therefore, image forgery detection and localization are important. The development of image editing tools has made this issue an important problem in the field of computer vision. In recent years, many different algorithms have been proposed to detect forgery in the image and pixel levels. All these algorithms are categorized into two main methods: traditional and deep-learning methods. The deep learning method is one of the important branches of artificial intelligence science. This method has become one of the most popular methods in most computer vision problems due to the automatic identification and prediction process and robustness against geometric transformations and post-processing operations. In this study, a comprehensive review of image forgery types, benchmark datasets, evaluation metrics in forgery detection, traditional forgery detection methods, discovering the weaknesses and limitations of traditional methods, forgery detection with deep learning methods, and the performance of this method is presented. According to the expansion of deep-learning methods and their successful performance in most computer vision problems, our main focus in this study is forgery detection based on deep-learning methods. This survey can be helpful for a researcher to obtain a deep background in the forgery detection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
11秒前
monica完成签到 ,获得积分10
20秒前
饱满含玉完成签到,获得积分10
24秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得30
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得30
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
安青兰完成签到 ,获得积分10
57秒前
ppppp发布了新的文献求助10
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
槙岛圣护发布了新的文献求助15
2分钟前
ajing完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
3分钟前
王豆豆发布了新的文献求助10
3分钟前
王豆豆完成签到,获得积分10
3分钟前
顾矜应助木叶采纳,获得10
3分钟前
3分钟前
lyt完成签到,获得积分10
3分钟前
喜悦的毛衣完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助友好的尔容采纳,获得10
3分钟前
Adc应助槙岛圣护采纳,获得15
4分钟前
机智的夜云完成签到,获得积分10
4分钟前
烟花应助祖宛凝采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828910
求助须知:如何正确求助?哪些是违规求助? 6038678
关于积分的说明 15575901
捐赠科研通 4948513
什么是DOI,文献DOI怎么找? 2666311
邀请新用户注册赠送积分活动 1611955
关于科研通互助平台的介绍 1566968