Research on infrared hyperspectral remote sensing cloud detection method based on deep learning

高光谱成像 遥感 计算机科学 云计算 卷积神经网络 深度学习 人工智能 红外线的 环境科学 地质学 物理 操作系统 光学
作者
Zhuoya Ni,Mengdie Wu,Qifeng Lu,Hongyuan Huo,Fu Wang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-21 被引量:1
标识
DOI:10.1080/01431161.2023.2221806
摘要

Infrared hyperspectral is susceptible to clouds, and accurately identifying whether the hyperspectral infrared sounder data is polluted by clouds is of great significance for numerical weather prediction and atmospheric parameter inversion. Since the complex spectral characteristics of clouds, the existing spectral threshold methods and machine learning methods have the difficulties of undetermined threshold and clear field of view (FOV) missed and false detections. In order to improve the cloud recognition accuracy of infrared hyperspectral data, three end-to-end cloud detection models combining deep neural network (DNN) and convolutional neural network (CNN) and long short-term memory network (LSTM) are proposed. In this paper, taking the High Spectral Infrared Atmospheric Sounder (HIRAS) equipped with Fengyun-3D (FY-3D) satellite as the research object, based on the same platform Moderate Resolution Spectral Imager-II (MERSI-II) cloud mask (CLM) product, the HIRAS Cloud dataset is established, and the accuracy test and qualitative analysis are carried out by using the test datasets and Typhoon Siamba, July 3, 2022, as well as the earth observation scene under the conditions of ice and snow surface. The test datasets analysis results show that the cloud detection accuracy of CNN and CNN-LSTM model is stable at 0.96, and the false alarm rate of cloud is 0.035 and 0.036, respectively, and the detection ability of DNN model is slightly inferior to the former two in the same hidden layer, with an accuracyof 0.94. In further qualitative research, we found that the CNN-LSTM model has high accuracy and robustness in infrared hyperspectral cloud detection, and the detection results in a variety of surface scenarios are consistent with the actual situation of whether clouds occur in the FOV of the instrument. Compared with CLM products, it can better identify clear ocean scenes, and provide fast and efficient cloud detection reference for data assimilation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的之槐完成签到 ,获得积分10
1秒前
ESTHERDY完成签到 ,获得积分10
1秒前
yyyyyge发布了新的文献求助20
1秒前
不想干活应助美好斓采纳,获得10
1秒前
未晚完成签到,获得积分10
2秒前
邱梓铭完成签到,获得积分10
2秒前
3秒前
DD完成签到,获得积分10
3秒前
zmmm完成签到,获得积分10
4秒前
4秒前
陌上尘开发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
星辰大海应助warburg采纳,获得10
5秒前
LAYWL完成签到,获得积分10
5秒前
九月初五完成签到,获得积分10
6秒前
爆米花应助Anatee采纳,获得10
6秒前
6秒前
DXF关闭了DXF文献求助
7秒前
哇哈哈发布了新的文献求助10
7秒前
少冰丶七分糖完成签到,获得积分10
7秒前
归去来兮发布了新的文献求助10
8秒前
甜美平文发布了新的文献求助10
8秒前
hi小豆发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
赤恩完成签到,获得积分10
9秒前
9秒前
chen发布了新的文献求助10
10秒前
酷炫book完成签到 ,获得积分10
10秒前
WQ完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743