Research on infrared hyperspectral remote sensing cloud detection method based on deep learning

高光谱成像 遥感 计算机科学 云计算 卷积神经网络 深度学习 人工智能 红外线的 环境科学 地质学 物理 光学 操作系统
作者
Zhuoya Ni,Mengdie Wu,Qifeng Lu,Hongyuan Huo,Fu Wang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:: 1-21 被引量:1
标识
DOI:10.1080/01431161.2023.2221806
摘要

Infrared hyperspectral is susceptible to clouds, and accurately identifying whether the hyperspectral infrared sounder data is polluted by clouds is of great significance for numerical weather prediction and atmospheric parameter inversion. Since the complex spectral characteristics of clouds, the existing spectral threshold methods and machine learning methods have the difficulties of undetermined threshold and clear field of view (FOV) missed and false detections. In order to improve the cloud recognition accuracy of infrared hyperspectral data, three end-to-end cloud detection models combining deep neural network (DNN) and convolutional neural network (CNN) and long short-term memory network (LSTM) are proposed. In this paper, taking the High Spectral Infrared Atmospheric Sounder (HIRAS) equipped with Fengyun-3D (FY-3D) satellite as the research object, based on the same platform Moderate Resolution Spectral Imager-II (MERSI-II) cloud mask (CLM) product, the HIRAS Cloud dataset is established, and the accuracy test and qualitative analysis are carried out by using the test datasets and Typhoon Siamba, July 3, 2022, as well as the earth observation scene under the conditions of ice and snow surface. The test datasets analysis results show that the cloud detection accuracy of CNN and CNN-LSTM model is stable at 0.96, and the false alarm rate of cloud is 0.035 and 0.036, respectively, and the detection ability of DNN model is slightly inferior to the former two in the same hidden layer, with an accuracyof 0.94. In further qualitative research, we found that the CNN-LSTM model has high accuracy and robustness in infrared hyperspectral cloud detection, and the detection results in a variety of surface scenarios are consistent with the actual situation of whether clouds occur in the FOV of the instrument. Compared with CLM products, it can better identify clear ocean scenes, and provide fast and efficient cloud detection reference for data assimilation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级无敌奥特大王完成签到,获得积分10
刚刚
NexusExplorer应助小包子采纳,获得10
刚刚
努力向前看完成签到,获得积分10
2秒前
2秒前
2秒前
agnes完成签到,获得积分10
3秒前
失眠的向日葵完成签到 ,获得积分10
3秒前
大橙子发布了新的文献求助10
4秒前
6秒前
7秒前
qq完成签到,获得积分10
8秒前
王二哈完成签到,获得积分10
9秒前
行者无疆发布了新的文献求助10
10秒前
令散内方完成签到,获得积分10
10秒前
外向的雁玉完成签到,获得积分10
10秒前
慧灰huihui发布了新的文献求助10
11秒前
Ava应助Desire采纳,获得10
12秒前
量子星尘发布了新的文献求助10
15秒前
风信子完成签到,获得积分10
15秒前
小熊完成签到 ,获得积分10
17秒前
21秒前
shu完成签到,获得积分10
21秒前
21秒前
勤奋的毛豆完成签到,获得积分10
24秒前
行者无疆完成签到,获得积分10
24秒前
25秒前
Jackylee完成签到,获得积分10
25秒前
careyzhou发布了新的文献求助10
26秒前
舒心之云完成签到,获得积分10
28秒前
Desire发布了新的文献求助10
28秒前
独自受罪完成签到 ,获得积分10
29秒前
甘蓝型油菜完成签到,获得积分10
30秒前
Distance发布了新的文献求助10
31秒前
大橙子发布了新的文献求助10
32秒前
毛哥看文献完成签到 ,获得积分10
32秒前
Desire完成签到,获得积分10
34秒前
AiQi完成签到 ,获得积分10
35秒前
月月鸟完成签到 ,获得积分10
36秒前
陈永伟完成签到,获得积分10
38秒前
传奇3应助qq采纳,获得10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022