Research on infrared hyperspectral remote sensing cloud detection method based on deep learning

高光谱成像 遥感 计算机科学 云计算 卷积神经网络 深度学习 人工智能 红外线的 环境科学 地质学 物理 操作系统 光学
作者
Zhuoya Ni,Mengdie Wu,Qifeng Lu,Hongyuan Huo,Fu Wang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7497-7517 被引量:6
标识
DOI:10.1080/01431161.2023.2221806
摘要

Infrared hyperspectral is susceptible to clouds, and accurately identifying whether the hyperspectral infrared sounder data is polluted by clouds is of great significance for numerical weather prediction and atmospheric parameter inversion. Since the complex spectral characteristics of clouds, the existing spectral threshold methods and machine learning methods have the difficulties of undetermined threshold and clear field of view (FOV) missed and false detections. In order to improve the cloud recognition accuracy of infrared hyperspectral data, three end-to-end cloud detection models combining deep neural network (DNN) and convolutional neural network (CNN) and long short-term memory network (LSTM) are proposed. In this paper, taking the High Spectral Infrared Atmospheric Sounder (HIRAS) equipped with Fengyun-3D (FY-3D) satellite as the research object, based on the same platform Moderate Resolution Spectral Imager-II (MERSI-II) cloud mask (CLM) product, the HIRAS Cloud dataset is established, and the accuracy test and qualitative analysis are carried out by using the test datasets and Typhoon Siamba, July 3, 2022, as well as the earth observation scene under the conditions of ice and snow surface. The test datasets analysis results show that the cloud detection accuracy of CNN and CNN-LSTM model is stable at 0.96, and the false alarm rate of cloud is 0.035 and 0.036, respectively, and the detection ability of DNN model is slightly inferior to the former two in the same hidden layer, with an accuracyof 0.94. In further qualitative research, we found that the CNN-LSTM model has high accuracy and robustness in infrared hyperspectral cloud detection, and the detection results in a variety of surface scenarios are consistent with the actual situation of whether clouds occur in the FOV of the instrument. Compared with CLM products, it can better identify clear ocean scenes, and provide fast and efficient cloud detection reference for data assimilation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟聪发布了新的文献求助10
1秒前
peiwenjing应助DP采纳,获得10
1秒前
思源应助yuyan_westchina采纳,获得10
4秒前
LHL发布了新的文献求助200
5秒前
anfly完成签到,获得积分10
5秒前
6秒前
传奇3应助yahosun采纳,获得10
7秒前
深情安青应助yahosun采纳,获得10
7秒前
在水一方应助yahosun采纳,获得10
7秒前
852应助yahosun采纳,获得10
7秒前
我是老大应助yahosun采纳,获得10
7秒前
9秒前
9秒前
ionize发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
张弛完成签到,获得积分10
14秒前
研友_ZeoKYL完成签到,获得积分10
14秒前
栗子发布了新的文献求助30
15秒前
15秒前
16秒前
heyya发布了新的文献求助10
16秒前
向天歌发布了新的文献求助20
17秒前
WFZ完成签到,获得积分10
18秒前
zzzzz完成签到,获得积分10
18秒前
hhh完成签到,获得积分10
20秒前
rapkat1221发布了新的文献求助10
21秒前
xiongyh10完成签到,获得积分10
22秒前
小透明发布了新的文献求助50
22秒前
25秒前
25秒前
26秒前
ionize完成签到,获得积分10
27秒前
hhh完成签到,获得积分10
28秒前
captain发布了新的文献求助10
29秒前
风起云涌完成签到,获得积分10
29秒前
2620完成签到,获得积分10
30秒前
SciGPT应助海蓝云天采纳,获得10
31秒前
量子星尘发布了新的文献求助20
31秒前
31秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586418
求助须知:如何正确求助?哪些是违规求助? 4669685
关于积分的说明 14779607
捐赠科研通 4619993
什么是DOI,文献DOI怎么找? 2530909
邀请新用户注册赠送积分活动 1499681
关于科研通互助平台的介绍 1467850