Research on infrared hyperspectral remote sensing cloud detection method based on deep learning

高光谱成像 遥感 计算机科学 云计算 卷积神经网络 深度学习 人工智能 红外线的 环境科学 地质学 物理 光学 操作系统
作者
Zhuoya Ni,Mengdie Wu,Qifeng Lu,Hongyuan Huo,Fu Wang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:: 1-21 被引量:1
标识
DOI:10.1080/01431161.2023.2221806
摘要

Infrared hyperspectral is susceptible to clouds, and accurately identifying whether the hyperspectral infrared sounder data is polluted by clouds is of great significance for numerical weather prediction and atmospheric parameter inversion. Since the complex spectral characteristics of clouds, the existing spectral threshold methods and machine learning methods have the difficulties of undetermined threshold and clear field of view (FOV) missed and false detections. In order to improve the cloud recognition accuracy of infrared hyperspectral data, three end-to-end cloud detection models combining deep neural network (DNN) and convolutional neural network (CNN) and long short-term memory network (LSTM) are proposed. In this paper, taking the High Spectral Infrared Atmospheric Sounder (HIRAS) equipped with Fengyun-3D (FY-3D) satellite as the research object, based on the same platform Moderate Resolution Spectral Imager-II (MERSI-II) cloud mask (CLM) product, the HIRAS Cloud dataset is established, and the accuracy test and qualitative analysis are carried out by using the test datasets and Typhoon Siamba, July 3, 2022, as well as the earth observation scene under the conditions of ice and snow surface. The test datasets analysis results show that the cloud detection accuracy of CNN and CNN-LSTM model is stable at 0.96, and the false alarm rate of cloud is 0.035 and 0.036, respectively, and the detection ability of DNN model is slightly inferior to the former two in the same hidden layer, with an accuracyof 0.94. In further qualitative research, we found that the CNN-LSTM model has high accuracy and robustness in infrared hyperspectral cloud detection, and the detection results in a variety of surface scenarios are consistent with the actual situation of whether clouds occur in the FOV of the instrument. Compared with CLM products, it can better identify clear ocean scenes, and provide fast and efficient cloud detection reference for data assimilation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北枳完成签到 ,获得积分10
3秒前
地精术士完成签到,获得积分10
4秒前
浙江嘉兴完成签到,获得积分10
4秒前
我是站长才怪应助通~采纳,获得10
6秒前
shiyu完成签到,获得积分10
6秒前
Herman_Chen完成签到,获得积分10
13秒前
Zn应助牛文文采纳,获得10
15秒前
15秒前
16秒前
贤惠的白开水完成签到 ,获得积分10
16秒前
英姑应助林林林采纳,获得10
17秒前
科研小民工应助Anquan采纳,获得30
17秒前
cyt9999发布了新的文献求助10
18秒前
天天快乐应助好难啊采纳,获得10
19秒前
干净的烧鹅完成签到,获得积分10
20秒前
21秒前
21秒前
在人中发布了新的文献求助10
22秒前
22秒前
fls221完成签到,获得积分10
23秒前
Laity完成签到,获得积分10
25秒前
25秒前
健忘捕发布了新的文献求助10
25秒前
林林林发布了新的文献求助10
26秒前
ok完成签到 ,获得积分10
27秒前
乐乐应助wewe采纳,获得30
27秒前
27秒前
拥有八根情丝完成签到 ,获得积分10
28秒前
科研通AI5应助Rex采纳,获得10
29秒前
30秒前
情怀应助樱桃小丸子采纳,获得10
31秒前
好难啊发布了新的文献求助10
32秒前
32秒前
36秒前
37秒前
37秒前
wewe完成签到,获得积分20
38秒前
李大爷发布了新的文献求助10
38秒前
Kevin完成签到,获得积分10
40秒前
酷炫的尔丝完成签到 ,获得积分10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851