Dehazing Ultrasound using Diffusion Models

计算机科学 薄雾 超声波 噪音(视频) 人工智能 医学诊断 计算机视觉 回声 成像体模 图像(数学) 放射科 医学 物理 气象学
作者
Tristan S. W. Stevens,F. Can Meral,Jason Yu,Iason Apostolakis,Jean-Luc Robert,Ruud J. G. van Sloun
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.11204
摘要

Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart. As a result, haze and other noise artifacts pose a real challenge to cardiac ultrasound imaging. In many cases, especially with difficult-to-image patients such as patients with obesity, a diagnosis from B-Mode ultrasound imaging is effectively rendered unusable, forcing sonographers to resort to contrast-enhanced ultrasound examinations or refer patients to other imaging modalities. Tissue harmonic imaging has been a popular approach to combat haze, but in severe cases is still heavily impacted by haze. Alternatively, denoising algorithms are typically unable to remove highly structured and correlated noise, such as haze. It remains a challenge to accurately describe the statistical properties of structured haze, and develop an inference method to subsequently remove it. Diffusion models have emerged as powerful generative models and have shown their effectiveness in a variety of inverse problems. In this work, we present a joint posterior sampling framework that combines two separate diffusion models to model the distribution of both clean ultrasound and haze in an unsupervised manner. Furthermore, we demonstrate techniques for effectively training diffusion models on radio-frequency ultrasound data and highlight the advantages over image data. Experiments on both \emph{in-vitro} and \emph{in-vivo} cardiac datasets show that the proposed dehazing method effectively removes haze while preserving signals from weakly reflected tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhanG完成签到,获得积分20
刚刚
刚刚
房房房发布了新的文献求助10
刚刚
赘婿应助cc采纳,获得10
1秒前
w野发布了新的文献求助30
2秒前
2秒前
2秒前
昂叔的头发丝儿完成签到,获得积分10
5秒前
YxY发布了新的文献求助10
5秒前
Lainey完成签到,获得积分10
6秒前
7秒前
12秒前
YxY完成签到,获得积分20
12秒前
无花果应助震动的化蛹采纳,获得10
13秒前
efine完成签到,获得积分20
14秒前
科研通AI5应助xuebi采纳,获得10
17秒前
量子星尘发布了新的文献求助10
21秒前
和光同尘发布了新的文献求助30
21秒前
脑洞疼应助落日余晖采纳,获得10
22秒前
诚心夏岚发布了新的文献求助10
22秒前
22秒前
追寻清完成签到,获得积分10
22秒前
23秒前
科目三应助一吃一大碗采纳,获得10
23秒前
ncwgx完成签到,获得积分10
24秒前
卡卡西应助蒋j采纳,获得20
25秒前
26秒前
LR发布了新的文献求助10
28秒前
29秒前
29秒前
醉熏的问夏完成签到 ,获得积分10
29秒前
kagaminelen完成签到,获得积分10
29秒前
makabaka发布了新的文献求助10
31秒前
seebeg发布了新的文献求助10
32秒前
zpjjj完成签到,获得积分10
32秒前
邱丘邱发布了新的文献求助15
32秒前
落日余晖完成签到,获得积分10
32秒前
小颜完成签到,获得积分10
34秒前
雨天有伞完成签到,获得积分10
34秒前
落日余晖发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971516
求助须知:如何正确求助?哪些是违规求助? 3516229
关于积分的说明 11181488
捐赠科研通 3251405
什么是DOI,文献DOI怎么找? 1795821
邀请新用户注册赠送积分活动 876051
科研通“疑难数据库(出版商)”最低求助积分说明 805245