State of health estimation and prediction of electric vehicle power battery based on operational vehicle data

健康状况 利用 粒子群优化 电池(电) 计算机科学 行驶循环 荷电状态 电动汽车 数据挖掘 功率(物理) 可靠性工程 人工智能 工程类 机器学习 物理 计算机安全 量子力学
作者
Xu Li,Peng Wang,Jian-Chun Wang,Fangzhao Xiu,Yuhang Xia
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108247-108247 被引量:10
标识
DOI:10.1016/j.est.2023.108247
摘要

With the rapid development of new energy vehicle industry, power battery is an important power source for new energy vehicles. Effective estimation and prediction of power battery health state (SOH) can help companies to effectively estimate and predict the health state of power battery, so as to ensure the safe operation of new energy vehicles. In this paper, we propose a SOH estimation and prediction method based on a long short-term memory network (LSTM) with time series model, and this method uses multi-source features. We extract potential health features from three perspectives and design the LSTM network model to construct a nonlinear mapping relationship between health features and SOH. To better exploit the battery time series information for SOH prediction, we built a time series prediction model containing trend, cycle and holiday models, and used particle swarm algorithm for multi-model optimization. In order to fully exploit the driver usage behavior and time and other information contained in different charge/discharge cycles, where the cycle model is built to include year, month, week, day, etc., SOH prediction can be performed for each future day without changing the original trend of the feature. The final model validation is performed on two vehicle validation datasets. The experimental results show that the model built in this paper outperforms traditional LSTM, GRU, BP and other network models in terms of accuracy of SOH evaluation and prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
微笑的采蓝完成签到,获得积分10
1秒前
2秒前
爱刷牙的小熊完成签到 ,获得积分10
2秒前
蓝精灵完成签到,获得积分10
2秒前
2秒前
Hello应助甜蜜的水壶采纳,获得10
4秒前
4秒前
5秒前
5秒前
认真土豆发布了新的文献求助10
6秒前
高天雨发布了新的文献求助10
6秒前
6秒前
kean1943完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
阿兀完成签到 ,获得积分10
8秒前
南昌黑人发布了新的文献求助10
9秒前
wys完成签到,获得积分10
10秒前
最好我儿长柏高中完成签到,获得积分10
11秒前
怡然依萱完成签到,获得积分10
14秒前
夕瑶发布了新的文献求助10
14秒前
14秒前
52pry完成签到,获得积分10
14秒前
酷波er应助YY采纳,获得10
15秒前
念念发布了新的文献求助10
15秒前
迟雾完成签到,获得积分10
18秒前
我是老大应助蹦蹦采纳,获得10
19秒前
所所应助高大雁兰采纳,获得10
20秒前
20秒前
木脑子发布了新的文献求助30
21秒前
22秒前
zhe完成签到,获得积分20
23秒前
23秒前
燚龘发布了新的文献求助30
23秒前
CNSer完成签到,获得积分10
24秒前
24秒前
25秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737