Geo-Net: Geometry-Guided Pretraining for Tooth Point Cloud Segmentation

点云 分割 点(几何) 几何学 网(多面体) 人工智能 牙科 云计算 口腔正畸科 计算机科学 数学 医学 操作系统
作者
Yifan Liu,Xutong Liu,Chenguang Yang,Yongqiang Yang,Hui Chen,Yifei Yuan
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (13): 1358-1364 被引量:1
标识
DOI:10.1177/00220345241292566
摘要

Accurately delineating individual teeth in 3-dimensional tooth point clouds is an important orthodontic application. Learning-based segmentation methods rely on labeled datasets, which are typically limited in scale due to the labor-intensive process of annotating each tooth. In this article, we propose a self-supervised pretraining framework, named Geo-Net, to boost segmentation performance by leveraging large-scale unlabeled data. The framework is based on the scalable masked autoencoders, and 2 geometry-guided designs, curvature-aware patching algorithm (CPA) and scale-aware reconstruction (SCR), are proposed to enhance the masked pretraining for tooth point cloud segmentation. In particular, CPA is designed to assemble informative patches as the reconstruction unit, guided by the estimated pointwise curvatures. Aimed at equipping the pretrained encoder with scale-aware modeling capacity, we also propose SCR to perform multiple reconstructions across shallow and deep layers. In vitro experiments reveal that after pretraining with large-scale unlabeled data, the proposed Geo-Net can outperform the supervised counterparts in mean Intersection of Union (mIoU) with the same amount of annotated labeled data. The code and data are available at https://github.com/yifliu3/Geo-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜美的银耳汤完成签到 ,获得积分20
1秒前
思念是什么味道完成签到,获得积分10
2秒前
苹果邪欢完成签到,获得积分20
2秒前
彭于晏应助ssk采纳,获得10
2秒前
2秒前
犹豫的踏歌完成签到,获得积分10
3秒前
爱科研发布了新的文献求助10
3秒前
3秒前
罗实发布了新的文献求助10
3秒前
饼饼完成签到,获得积分10
4秒前
4秒前
5秒前
Platinum完成签到,获得积分10
5秒前
qise发布了新的文献求助10
5秒前
spiritpope发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
好运来应助倩倩采纳,获得10
7秒前
whh123完成签到 ,获得积分10
7秒前
ssk完成签到,获得积分20
7秒前
louiselong发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得20
8秒前
慕青应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Jiang应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
Jiang应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
LanXiaohong完成签到,获得积分10
9秒前
9秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271