Geo-Net: Geometry-Guided Pretraining for Tooth Point Cloud Segmentation

点云 分割 点(几何) 几何学 网(多面体) 人工智能 牙科 云计算 口腔正畸科 计算机科学 数学 医学 操作系统
作者
Yifan Liu,Xutong Liu,Chenguang Yang,Yanqi Yang,Hui Chen,Yifei Yuan
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (13): 1358-1364 被引量:3
标识
DOI:10.1177/00220345241292566
摘要

Accurately delineating individual teeth in 3-dimensional tooth point clouds is an important orthodontic application. Learning-based segmentation methods rely on labeled datasets, which are typically limited in scale due to the labor-intensive process of annotating each tooth. In this article, we propose a self-supervised pretraining framework, named Geo-Net, to boost segmentation performance by leveraging large-scale unlabeled data. The framework is based on the scalable masked autoencoders, and 2 geometry-guided designs, curvature-aware patching algorithm (CPA) and scale-aware reconstruction (SCR), are proposed to enhance the masked pretraining for tooth point cloud segmentation. In particular, CPA is designed to assemble informative patches as the reconstruction unit, guided by the estimated pointwise curvatures. Aimed at equipping the pretrained encoder with scale-aware modeling capacity, we also propose SCR to perform multiple reconstructions across shallow and deep layers. In vitro experiments reveal that after pretraining with large-scale unlabeled data, the proposed Geo-Net can outperform the supervised counterparts in mean Intersection of Union (mIoU) with the same amount of annotated labeled data. The code and data are available at https://github.com/yifliu3/Geo-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Teddyfeeder完成签到,获得积分10
1秒前
1秒前
科研通AI6应助aaaaaYue采纳,获得10
1秒前
JamesPei应助linkman采纳,获得10
1秒前
2秒前
tang完成签到,获得积分20
3秒前
3秒前
4秒前
BGWZSG完成签到,获得积分20
4秒前
4秒前
在水一方应助haha采纳,获得10
4秒前
4秒前
5秒前
Lv发布了新的文献求助10
5秒前
5秒前
xiaozhou完成签到,获得积分10
5秒前
6秒前
积极的笙发布了新的文献求助10
6秒前
sing发布了新的文献求助10
7秒前
WAHAHAoo发布了新的文献求助10
7秒前
8秒前
8秒前
livian完成签到,获得积分10
8秒前
8秒前
9秒前
悦耳的襄发布了新的文献求助10
9秒前
NE555完成签到,获得积分10
9秒前
10秒前
DUhn发布了新的文献求助10
10秒前
风清扬应助王铭轩采纳,获得10
10秒前
舒心的冷安完成签到,获得积分10
10秒前
fyjlfy发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Wannnnqi发布了新的文献求助10
11秒前
糖小白完成签到,获得积分10
12秒前
fff发布了新的文献求助10
12秒前
Danboard发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914