A novel prediction model for the prognosis of non-small cell lung cancer with clinical routine laboratory indicators: a machine learning approach

机器学习 肺癌 决策树 人工智能 医学 生存分析 肿瘤科 比例危险模型 随机森林 人工神经网络 预测建模 预后变量 内科学 算法 计算机科学 多元分析
作者
Yuli Wang,Na Mei,Ziyi Zhou,Yuan Fang,Jiacheng Lin,Fanchen Zhao,Zhihong Fang,Li Yan
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02753-3
摘要

Lung cancer is characterized by high morbidity and mortality due to the lack of practical early diagnostic and prognostic tools. The present study uses machine learning algorithms to construct a clinical predictive model for non-small cell lung cancer (NSCLC) patients. Laboratory indices of the NSCLC patients at their initial visit were collected for quality control and exploratory analysis. By comparing the levels of the above indices between the survival and death groups, the statistically significant indices were selected for subsequent machine learning modeling. Ten machine learning algorithms were then employed to develop the predictive models with survival and recurrence as outcomes, respectively. Moreover, regression models were constructed using the random survival forest algorithm by incorporating the survival time dimension. Finally, critical variables in the optimal model were screened based on the interpretable algorithms to build a decision tree to facilitate clinical application. 682 patients were enrolled according to the inclusion and exclusion criteria. The preliminary comparison results revealed that except for fast blood glucose, CD3+T cell proportion, NK cell proportion, and CA72-4, there were significant statistical differences in other tumor markers, inflammation, metabolism, and immune-related indices between the survival and death groups (p < 0.01). Subsequently, indices with statistical differences were incorporated into machine learning modeling and evaluation. The results showed that among the ten prognostic models constructed using survival status as the outcome, the neural network model obtained the best predictive performance, with accuracy, sensitivity, specificity, AUC, and precision values of 0.993, 0.987, 1.000, 0.994, and 1.000, respectively. The corresponding SHAP16 algorithm revealed that the top five variables in terms of importance were interleukin6 (IL-6), soluble interleukin2 receptor (sIL-2R), cholesterol, CEA, and Cy211, respectively. The random survival forest model also confirmed the critical role of CEA, sIL-2R, and IL-6 in predicting the prognosis of NSCLC patients. A decision tree model with seven cut-off points based on the above three indices was eventually built for clinical application. The neural network model exhibited ideal predictive performance in the survival status of NSCLC patients, and the decision tree model constructed based on selected important variables was conducive to rapid bedside prognosis assessment and decision-making. There is a lack of highly sensitive, specific, and organ-specific biomarkers to predict the prognosis of lung cancer patients. Compared with traditional predictive models, the models constructed by machine learning methods have incredibly high predictive accuracy, sensitivity, and specificity. Both classification and regression algorithms confirmed the significant predictive value of IL-6, sIL-2R, and CEA on the prognosis of lung cancer patients. A decision tree prognostic model including IL-6, sIL-2R, and CEA with explicit cutoff values was further provided for rapid prognostic assessment and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王小雨完成签到 ,获得积分10
4秒前
wang完成签到,获得积分10
4秒前
5秒前
lulu完成签到 ,获得积分10
6秒前
11秒前
YR完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
hsiuf完成签到,获得积分10
21秒前
Zhao完成签到 ,获得积分10
21秒前
25秒前
Lrcx完成签到 ,获得积分10
31秒前
31秒前
一株多肉完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
34秒前
zhang完成签到 ,获得积分10
35秒前
浮游应助明理问柳采纳,获得10
40秒前
40秒前
41秒前
峰成完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
43秒前
43秒前
43秒前
chenyan完成签到,获得积分0
48秒前
库库发布了新的文献求助10
48秒前
ableyy完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
Skywalk满天星完成签到,获得积分10
55秒前
量子星尘发布了新的文献求助10
59秒前
研学弟完成签到,获得积分10
1分钟前
大团长完成签到,获得积分10
1分钟前
Lilian完成签到,获得积分10
1分钟前
申燕婷完成签到 ,获得积分10
1分钟前
易止完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612966
求助须知:如何正确求助?哪些是违规求助? 4017956
关于积分的说明 12436915
捐赠科研通 3700270
什么是DOI,文献DOI怎么找? 2040657
邀请新用户注册赠送积分活动 1073414
科研通“疑难数据库(出版商)”最低求助积分说明 957049