A novel prediction model for the prognosis of non-small cell lung cancer with clinical routine laboratory indicators: a machine learning approach

机器学习 肺癌 决策树 人工智能 医学 生存分析 肿瘤科 比例危险模型 随机森林 人工神经网络 预测建模 预后变量 内科学 算法 计算机科学 多元分析
作者
Yuli Wang,Na Mei,Ziyi Zhou,Yuan Fang,Jiacheng Lin,Fanchen Zhao,Zhihong Fang,Li Yan
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02753-3
摘要

Lung cancer is characterized by high morbidity and mortality due to the lack of practical early diagnostic and prognostic tools. The present study uses machine learning algorithms to construct a clinical predictive model for non-small cell lung cancer (NSCLC) patients. Laboratory indices of the NSCLC patients at their initial visit were collected for quality control and exploratory analysis. By comparing the levels of the above indices between the survival and death groups, the statistically significant indices were selected for subsequent machine learning modeling. Ten machine learning algorithms were then employed to develop the predictive models with survival and recurrence as outcomes, respectively. Moreover, regression models were constructed using the random survival forest algorithm by incorporating the survival time dimension. Finally, critical variables in the optimal model were screened based on the interpretable algorithms to build a decision tree to facilitate clinical application. 682 patients were enrolled according to the inclusion and exclusion criteria. The preliminary comparison results revealed that except for fast blood glucose, CD3+T cell proportion, NK cell proportion, and CA72-4, there were significant statistical differences in other tumor markers, inflammation, metabolism, and immune-related indices between the survival and death groups (p < 0.01). Subsequently, indices with statistical differences were incorporated into machine learning modeling and evaluation. The results showed that among the ten prognostic models constructed using survival status as the outcome, the neural network model obtained the best predictive performance, with accuracy, sensitivity, specificity, AUC, and precision values of 0.993, 0.987, 1.000, 0.994, and 1.000, respectively. The corresponding SHAP16 algorithm revealed that the top five variables in terms of importance were interleukin6 (IL-6), soluble interleukin2 receptor (sIL-2R), cholesterol, CEA, and Cy211, respectively. The random survival forest model also confirmed the critical role of CEA, sIL-2R, and IL-6 in predicting the prognosis of NSCLC patients. A decision tree model with seven cut-off points based on the above three indices was eventually built for clinical application. The neural network model exhibited ideal predictive performance in the survival status of NSCLC patients, and the decision tree model constructed based on selected important variables was conducive to rapid bedside prognosis assessment and decision-making. There is a lack of highly sensitive, specific, and organ-specific biomarkers to predict the prognosis of lung cancer patients. Compared with traditional predictive models, the models constructed by machine learning methods have incredibly high predictive accuracy, sensitivity, and specificity. Both classification and regression algorithms confirmed the significant predictive value of IL-6, sIL-2R, and CEA on the prognosis of lung cancer patients. A decision tree prognostic model including IL-6, sIL-2R, and CEA with explicit cutoff values was further provided for rapid prognostic assessment and clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光火车完成签到 ,获得积分10
1秒前
cc完成签到,获得积分10
4秒前
合适的寄灵完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI5应助cc采纳,获得10
7秒前
铜泰妍完成签到 ,获得积分10
8秒前
贝贝完成签到 ,获得积分10
13秒前
Lrcx完成签到 ,获得积分10
14秒前
Wen完成签到 ,获得积分10
15秒前
盘尼西林完成签到 ,获得积分10
17秒前
LOVE0077完成签到,获得积分10
20秒前
zhao完成签到,获得积分10
22秒前
BINBIN完成签到 ,获得积分10
32秒前
ambrose37完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
40秒前
fufufu123完成签到 ,获得积分10
44秒前
开心的大娘完成签到,获得积分10
44秒前
www完成签到 ,获得积分10
46秒前
末末完成签到 ,获得积分10
56秒前
无为完成签到 ,获得积分10
57秒前
白嫖论文完成签到 ,获得积分10
59秒前
上官若男应助忧伤的步美采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
花花发布了新的文献求助10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
1分钟前
Li完成签到,获得积分10
1分钟前
张琨完成签到 ,获得积分10
1分钟前
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
热情的乘风完成签到,获得积分20
1分钟前
1分钟前
霍凡白完成签到,获得积分10
1分钟前
1分钟前
Feng发布了新的文献求助20
1分钟前
怕孤单的若颜完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022