心室
肺动脉高压
磁共振成像
适应不良
心脏病学
冲程容积
医学
肌肉肥大
内质网
内科学
肺动脉
生物
病理
放射科
细胞生物学
心力衰竭
射血分数
精神科
作者
Nicoleta Baxan,Lin Zhao,Ali Ashek,Marili Niglas,Dingyi Wang,Fatemeh Khassafi,Farah Sabrin,Olivier Dubois,Chien-Nien Chen,Soni Savai Pullamsetti,Martin R. Wilkins,Lan Zhao
标识
DOI:10.1038/s41598-024-79029-3
摘要
Abstract Deep phenotyping the right ventricle (RV) is essential for understanding the mechanisms of adaptive and maladaptive RV responses to pulmonary hypertension (PH). In this study, feature selection coupled with machine learning classification/ranking of specific cardiac magnetic resonance imaging (MRI) features from cine-MRI, flow-sensitized, and extracellular-volume techniques were used to assess RV remodelling in monocrotaline (MCT) and Sugen hypoxia (SuHx) PH rats. Early physiological changes associated with RV adaptation were detected along with prediction of RV maladaptive outcomes. Key adaptation features included haemodynamic alterations of pulmonary blood flow ejection and wave reflection, mild RV dilatation, progressive RV hypertrophy with subtle extracellular volume growth of RV wall. A dominant component of maladaptation was the extracellular matrix increase at RV insertion points and septum, observations compatible with histopathologic and RNA-sequencing results. The upregulation of mammalian target of rapamycin (mTOR) paralleled by AMP-activated protein kinase (AMPK) deactivation was seen at 4-week MCT and 8-week SuHx, along with reduced sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase (SERCA2) expression, strongly associated with the RV systolic malfunction seen at this stage in vivo. The here established MRI features can serve as potential imaging biomarkers to evaluate PH treatment efficacy in preclinical studies and build up translational markers for the PH clinic.
科研通智能强力驱动
Strongly Powered by AbleSci AI