清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Simple Data Augmentation for Graph Classification: A Perspective of Equivariance and Invariance

简单(哲学) 数学 透视图(图形) 图形 简单图 计算机科学 理论计算机科学 离散数学 几何学 哲学 认识论
作者
Yongduo Sui,Shuyao Wang,Jie Sun,Zhiyuan Liu,Qing Cui,Longfei Li,Jun Zhou,Xiang Wang,Xiangnan He
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3706062
摘要

In graph classification, the out-of-distribution (OOD) issue is attracting great attention. To address this issue, a prevailing idea is to learn stable features, on the assumption that they are substructures causally determining the label and that their relationship with the label is stable to the distributional uncertainty. In contrast, the complementary parts termed environmental features, fail to determine the label solely and hold varying relationships with the label, thus ascribed to the possible reason for the distribution shift. Existing generalization efforts mainly encourage the model's insensitivity to environmental features. While the sensitivity to stable features is promising to distinguish the crucial clues from the distributional uncertainty but largely unexplored. A paradigm of simultaneously exploring the sensitivity to stable features and insensitivity to environmental features is until-now lacking to achieve the generalizable graph classification, to the best of our knowledge. In this work, we conjecture that generalizable models should be sensitive to stable features and insensitive to environmental features. To this end, we propose a simple yet effective augmentation strategy for graph classification: E quivariant and I nvariant C ross- D ata A ugmentation (EI-CDA). By employing equivariance, given a pair of input graphs, we first estimate their stable and environmental features via masks. Then we linearly mix the estimated stable features of two graphs and encourage the model predictions faithfully reflect their mixed semantics. Meanwhile, by using invariance, we swap the estimated environmental features of two graphs and keep the predictions invariant. This simple yet effective strategy endows the models with both sensitivity to stable features and insensitivity to environmental features. Extensive experiments show that EI-CDA significantly improves performance and outperforms leading baselines. Our codes are available at: https://github.com/yongduosui/EI-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming123ah完成签到,获得积分10
6秒前
xingsixs完成签到 ,获得积分10
13秒前
开心浩阑完成签到 ,获得积分10
22秒前
柚子完成签到 ,获得积分10
28秒前
38秒前
量子星尘发布了新的文献求助10
40秒前
科研通AI5应助Zj采纳,获得10
45秒前
48秒前
科研通AI5应助科研通管家采纳,获得10
48秒前
55秒前
耍酷千亦完成签到 ,获得积分10
1分钟前
张成完成签到 ,获得积分10
1分钟前
Zj完成签到,获得积分10
1分钟前
Zj发布了新的文献求助10
1分钟前
济民财完成签到,获得积分10
1分钟前
搜集达人应助111111111采纳,获得10
1分钟前
Wang完成签到 ,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
111111111发布了新的文献求助10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
轩辕冰夏发布了新的文献求助10
2分钟前
麻花阳完成签到,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助20
3分钟前
六一完成签到 ,获得积分10
3分钟前
Glitter完成签到 ,获得积分10
3分钟前
3分钟前
怪杰完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
董姗姗完成签到,获得积分10
4分钟前
水木应助东方越彬采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
5分钟前
xiaoyi完成签到 ,获得积分10
5分钟前
theo完成签到 ,获得积分10
5分钟前
syyyy完成签到 ,获得积分10
5分钟前
5分钟前
所所应助心灵美语兰采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292