亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Simple Data Augmentation for Graph Classification: A Perspective of Equivariance and Invariance

简单(哲学) 数学 透视图(图形) 图形 简单图 计算机科学 理论计算机科学 离散数学 几何学 认识论 哲学
作者
Yongduo Sui,Shuyao Wang,Jie Sun,Zhiyuan Liu,Qing Cui,Longfei Li,Jun Zhou,Xiang Wang,Xiangnan He
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3706062
摘要

In graph classification, the out-of-distribution (OOD) issue is attracting great attention. To address this issue, a prevailing idea is to learn stable features, on the assumption that they are substructures causally determining the label and that their relationship with the label is stable to the distributional uncertainty. In contrast, the complementary parts termed environmental features, fail to determine the label solely and hold varying relationships with the label, thus ascribed to the possible reason for the distribution shift. Existing generalization efforts mainly encourage the model's insensitivity to environmental features. While the sensitivity to stable features is promising to distinguish the crucial clues from the distributional uncertainty but largely unexplored. A paradigm of simultaneously exploring the sensitivity to stable features and insensitivity to environmental features is until-now lacking to achieve the generalizable graph classification, to the best of our knowledge. In this work, we conjecture that generalizable models should be sensitive to stable features and insensitive to environmental features. To this end, we propose a simple yet effective augmentation strategy for graph classification: E quivariant and I nvariant C ross- D ata A ugmentation (EI-CDA). By employing equivariance, given a pair of input graphs, we first estimate their stable and environmental features via masks. Then we linearly mix the estimated stable features of two graphs and encourage the model predictions faithfully reflect their mixed semantics. Meanwhile, by using invariance, we swap the estimated environmental features of two graphs and keep the predictions invariant. This simple yet effective strategy endows the models with both sensitivity to stable features and insensitivity to environmental features. Extensive experiments show that EI-CDA significantly improves performance and outperforms leading baselines. Our codes are available at: https://github.com/yongduosui/EI-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
32秒前
上官若男应助石榴汁的书采纳,获得10
33秒前
49秒前
53秒前
momoko180发布了新的文献求助10
54秒前
1分钟前
1分钟前
xxx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天天快乐应助momoko180采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Orange应助经钧采纳,获得10
3分钟前
waleedo2020发布了新的文献求助10
3分钟前
waleedo2020完成签到,获得积分10
3分钟前
3分钟前
燕燕于飞完成签到,获得积分10
3分钟前
4分钟前
orixero应助Marciu33采纳,获得10
4分钟前
4分钟前
4分钟前
经钧发布了新的文献求助10
4分钟前
斯文败类应助科研小趴菜采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
小倒霉蛋完成签到 ,获得积分10
5分钟前
胡可完成签到 ,获得积分10
6分钟前
领导范儿应助高高的绿蓉采纳,获得30
6分钟前
微卫星不稳定完成签到 ,获得积分0
6分钟前
6分钟前
高高的绿蓉完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418344
求助须知:如何正确求助?哪些是违规求助? 4534108
关于积分的说明 14143089
捐赠科研通 4450330
什么是DOI,文献DOI怎么找? 2441161
邀请新用户注册赠送积分活动 1432939
关于科研通互助平台的介绍 1410269