A Simple Data Augmentation for Graph Classification: A Perspective of Equivariance and Invariance

简单(哲学) 数学 透视图(图形) 图形 简单图 计算机科学 理论计算机科学 离散数学 几何学 认识论 哲学
作者
Yongduo Sui,Shuyao Wang,Jie Sun,Zhiyuan Liu,Qing Cui,Longfei Li,Jun Zhou,Xiang Wang,Xiangnan He
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3706062
摘要

In graph classification, the out-of-distribution (OOD) issue is attracting great attention. To address this issue, a prevailing idea is to learn stable features, on the assumption that they are substructures causally determining the label and that their relationship with the label is stable to the distributional uncertainty. In contrast, the complementary parts termed environmental features, fail to determine the label solely and hold varying relationships with the label, thus ascribed to the possible reason for the distribution shift. Existing generalization efforts mainly encourage the model's insensitivity to environmental features. While the sensitivity to stable features is promising to distinguish the crucial clues from the distributional uncertainty but largely unexplored. A paradigm of simultaneously exploring the sensitivity to stable features and insensitivity to environmental features is until-now lacking to achieve the generalizable graph classification, to the best of our knowledge. In this work, we conjecture that generalizable models should be sensitive to stable features and insensitive to environmental features. To this end, we propose a simple yet effective augmentation strategy for graph classification: E quivariant and I nvariant C ross- D ata A ugmentation (EI-CDA). By employing equivariance, given a pair of input graphs, we first estimate their stable and environmental features via masks. Then we linearly mix the estimated stable features of two graphs and encourage the model predictions faithfully reflect their mixed semantics. Meanwhile, by using invariance, we swap the estimated environmental features of two graphs and keep the predictions invariant. This simple yet effective strategy endows the models with both sensitivity to stable features and insensitivity to environmental features. Extensive experiments show that EI-CDA significantly improves performance and outperforms leading baselines. Our codes are available at: https://github.com/yongduosui/EI-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ysh完成签到,获得积分10
1秒前
ztt发布了新的文献求助10
2秒前
超级无敌好吃完成签到,获得积分10
2秒前
wzc发布了新的文献求助10
2秒前
3129386658发布了新的文献求助10
2秒前
我吃柠檬发布了新的文献求助10
2秒前
Tancl1235完成签到,获得积分10
2秒前
粥粥发布了新的文献求助10
3秒前
4秒前
薛武发布了新的文献求助10
5秒前
岁岁菌完成签到,获得积分10
6秒前
松子发布了新的文献求助10
6秒前
7秒前
英俊的铭应助有梦想的人采纳,获得10
8秒前
8秒前
8秒前
10秒前
热情蓝完成签到,获得积分20
10秒前
Zayro完成签到,获得积分10
11秒前
科研通AI6应助羊羊羊采纳,获得10
11秒前
12秒前
Lucas应助cordon采纳,获得10
13秒前
13秒前
simdows完成签到,获得积分10
13秒前
14秒前
Ava应助TTOM采纳,获得10
14秒前
yiyi完成签到,获得积分10
15秒前
CipherSage应助我吃柠檬采纳,获得10
15秒前
16秒前
16秒前
共享精神应助苒苒采纳,获得30
17秒前
YaoHui发布了新的文献求助10
17秒前
19秒前
19秒前
yyy发布了新的文献求助10
19秒前
19秒前
20秒前
悠悠发布了新的文献求助10
20秒前
华仔应助hahaer采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396