已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Simple Data Augmentation for Graph Classification: A Perspective of Equivariance and Invariance

简单(哲学) 数学 透视图(图形) 图形 简单图 计算机科学 理论计算机科学 离散数学 几何学 认识论 哲学
作者
Yongduo Sui,Shuyao Wang,Jie Sun,Zhiyuan Liu,Qing Cui,Longfei Li,Jun Zhou,Xiang Wang,Xiangnan He
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
被引量:2
标识
DOI:10.1145/3706062
摘要

In graph classification, the out-of-distribution (OOD) issue is attracting great attention. To address this issue, a prevailing idea is to learn stable features, on the assumption that they are substructures causally determining the label and that their relationship with the label is stable to the distributional uncertainty. In contrast, the complementary parts termed environmental features, fail to determine the label solely and hold varying relationships with the label, thus ascribed to the possible reason for the distribution shift. Existing generalization efforts mainly encourage the model's insensitivity to environmental features. While the sensitivity to stable features is promising to distinguish the crucial clues from the distributional uncertainty but largely unexplored. A paradigm of simultaneously exploring the sensitivity to stable features and insensitivity to environmental features is until-now lacking to achieve the generalizable graph classification, to the best of our knowledge. In this work, we conjecture that generalizable models should be sensitive to stable features and insensitive to environmental features. To this end, we propose a simple yet effective augmentation strategy for graph classification: E quivariant and I nvariant C ross- D ata A ugmentation (EI-CDA). By employing equivariance, given a pair of input graphs, we first estimate their stable and environmental features via masks. Then we linearly mix the estimated stable features of two graphs and encourage the model predictions faithfully reflect their mixed semantics. Meanwhile, by using invariance, we swap the estimated environmental features of two graphs and keep the predictions invariant. This simple yet effective strategy endows the models with both sensitivity to stable features and insensitivity to environmental features. Extensive experiments show that EI-CDA significantly improves performance and outperforms leading baselines. Our codes are available at: https://github.com/yongduosui/EI-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可钳发布了新的文献求助30
刚刚
汉堡包应助shier采纳,获得10
3秒前
鹿小新完成签到 ,获得积分0
3秒前
4秒前
依桉完成签到 ,获得积分10
5秒前
mumu完成签到,获得积分10
5秒前
斗罗大陆完成签到,获得积分10
6秒前
6秒前
温馨家园完成签到 ,获得积分10
7秒前
阿朱完成签到 ,获得积分10
7秒前
Ye发布了新的文献求助10
8秒前
8秒前
伏尾窗的猫完成签到,获得积分20
8秒前
Milesma发布了新的文献求助10
9秒前
10秒前
凶狠的嚣关注了科研通微信公众号
10秒前
燕儿完成签到 ,获得积分20
11秒前
今天晚上早点睡完成签到 ,获得积分10
12秒前
雪中完成签到 ,获得积分10
14秒前
ceicic发布了新的文献求助10
14秒前
晴子发布了新的文献求助10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
Tanya47应助科研通管家采纳,获得10
15秒前
Tanya47应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
底层特律应助科研通管家采纳,获得10
15秒前
Tanya47应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
烟花应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
15秒前
Tanya47应助科研通管家采纳,获得10
15秒前
dusk完成签到 ,获得积分10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759