The transforaminal lumbar interbody fusion (TLIF) technique, pioneered by Harms and Rolinger in 1982 and further refined in the early 2000s by Rosenberg and Mummaneni and later by Foley and Lefkowitz, uses Kambin triangle to access the disc space, thecal sac, and nerve roots. The minimally invasive surgery (MIS) approach to TLIF minimizes soft tissue disruption and spinal segment destabilization, offering benefits such as reduced operative times, blood loss, complications, and postoperative opiate use, with comparable fusion rates to open techniques. Despite these advantages, MIS interbody selection poses challenges, with the MIS TLIF preferred for L4-5 fusions when lordosis restoration is not needed. Key to the MIS TLIF technique is the use of expandable retractors, image-guided pedicle screw placement, and innovations like the expandable TLIF, which improves disc space lordosis. Navigation technologies, including 3-dimensional navigation, augmented reality, and robotics, may enhance surgical accuracy and visualization and may allow more precise screw and cage placement and reducing operative time and complications. Awake MIS TLIF, incorporating conscious sedation and local anesthesia, offers additional benefits of faster discharge and reduced postoperative pain. Some authors have also started using endoscopic techniques as well to further minimize tissue trauma. The integration of these advanced techniques and technologies in MIS TLIF continues to improve surgical outcomes and expands the applicability of this minimally invasive approach, making it a valuable tool in spine surgery.