锌
生物利用度
化学
吸收(声学)
功能(生物学)
双重功能
牡蛎
肽
生物物理学
生物化学
细胞生物学
材料科学
生物
生物信息学
计算机科学
生态学
有机化学
计算机图形学(图像)
轮廓
复合材料
作者
Ximing J. Yang,Siyi Wang,Hanxiong Liu,Tuo Zhang,Shuzhen Cheng,Ming Du
标识
DOI:10.1016/j.jare.2025.02.005
摘要
Zinc deficiency is a global health issue that impairs immune function, growth, and energy metabolism. Although conventional zinc supplements have been developed, their effectiveness is limited by poor bioavailability and susceptibility to dietary inhibitors. In this study, a peptide-zinc complex (IE-Zn) derived from oysters was developed to enhance zinc uptake and address metabolic disruptions caused by deficiency. It was determined that Zn2+ binds with high affinity to the IE peptide, promoting structural flexibility that facilitates zinc transport through both zinc ion transporters and oligopeptide transporters. In Caco-2 and IEC-6 cell models, IE-Zn was shown to significantly improve zinc absorption and retention compared to ZnSO4, driven by the upregulation of ZIP4 and PEPT1 transporters. In vivo studies in a zinc-deficient mouse model confirmed enhanced zinc absorption and distribution across serum, intestine, and liver. Moreover, IE-Zn restored energy homeostasis by activating the AMPK/PGC1-α/NRF-1/TFAM signaling pathway, promoting mitochondrial biogenesis and reducing oxidative stress. These findings suggest that IE-Zn is a superior zinc supplement with higher bioavailability and serves as a potent regulator of cellular energy metabolism, offering therapeutic potential for managing conditions related to zinc deficiency and mitochondrial dysfunction. This study lays the foundation for further exploration of peptide-mineral complexes as advanced nutritional supplements with broad applications. Subsequent studies will further investigate the absorption pathway and targeting of peptide-zinc complex. The hope is to provide potential preventive applications for people in need, including zinc deficiency and a range of diseases caused by zinc deficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI