The TabNet Model for Diagnosing Axial Spondyloarthritis Using MRI Imaging Findings and Clinical Risk Factors

医学 强直 接收机工作特性 轴性脊柱炎 磁共振成像 放射科 队列 内科学 骶髂关节炎 外科
作者
Zhaojuan Zhang,Yiling Pan,Yanjie Lu,Lusi Ye,Mo Zheng,Guodao Zhang,Dan Chen
出处
期刊:International Journal of Rheumatic Diseases [Wiley]
卷期号:27 (12)
标识
DOI:10.1111/1756-185x.70004
摘要

ABSTRACT Objectives The aim of this study is to develop and validate a model for predicting axial spondyloarthritis (axSpA) based on sacroiliac joint (SIJ)‐MRI imaging findings and clinical risk factors. Methods The study is implemented on the data of 942 patients which contains of 707 patients with axSpA and 235 patients with non‐axSpA. To begin with, the patients were split into training ( n = 753) and validation ( n = 189) cohorts. Secondly, multiple assessors manually extract the features of active inflammation (bone marrow edema) and structural lesions (erosions, sclerosis, ankylosis, joint space changes, and fat lesions). Meanwhile, we utilize 11 machine learning models and TabNet to develop imaging models, which contain six clinical risk factors for clinical models and combined clinical‐imaging models. Finally, the diagnostic performance of the aforementioned models was evaluated in the validation cohort including accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, F1‐score, and Matthew's correlation coefficient (MCC). Results Six features were extracted from the imaging findings. The combined clinical‐imaging models outperform the clinical and imaging models. In contrast, the combined clinical‐imaging model via TabNet (CCMRT) achieved the optimal AUC of 0.93(95% CI: 0.89, 0.97). Furthermore, it is observed that the bilateral joint space changes and right‐sided erosions, HLA‐B27 positivity, and CRP values significantly affected axSpA diagnostic prediction. Conclusion The prediction model based on clinical risk factors and SIJ‐MRI imaging features can distinguish axSpA and non‐axSpA effectively. In addition, the TabNet demonstrates superior diagnostic efficacy compared with machine learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三叔应助Steven采纳,获得10
1秒前
Simon完成签到,获得积分20
2秒前
长京完成签到 ,获得积分10
2秒前
洁净灭男完成签到,获得积分10
4秒前
寒冷的皮带完成签到 ,获得积分10
9秒前
开朗问晴完成签到,获得积分10
11秒前
以山涧为湫完成签到,获得积分10
12秒前
慕青应助浅斟低唱采纳,获得10
13秒前
张杠杠完成签到 ,获得积分10
15秒前
16秒前
17秒前
liu6677完成签到,获得积分10
17秒前
20秒前
22秒前
emmaguo713发布了新的文献求助10
22秒前
怡然的姒发布了新的文献求助10
22秒前
火星上的菲鹰给李李李的求助进行了留言
22秒前
24秒前
小熊猪完成签到,获得积分10
24秒前
小乔发布了新的文献求助10
25秒前
高兴的蜻蜓完成签到,获得积分10
26秒前
Bryce完成签到 ,获得积分10
27秒前
wangxuan完成签到,获得积分10
27秒前
赫连立果完成签到 ,获得积分10
27秒前
xxx完成签到 ,获得积分10
29秒前
番茄炒鸡蛋完成签到,获得积分10
29秒前
倒霉孩子发布了新的文献求助10
30秒前
大模型应助浅斟低唱采纳,获得10
32秒前
长风完成签到,获得积分10
33秒前
35秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
38秒前
40秒前
神仙师姐应助科研通管家采纳,获得10
41秒前
Xwenhui完成签到,获得积分10
41秒前
无花果应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
慕青应助科研通管家采纳,获得10
41秒前
力劈华山完成签到,获得积分10
41秒前
情怀应助科研通管家采纳,获得10
41秒前
小蘑菇应助科研通管家采纳,获得30
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671865
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780495
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610296
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119