化学
适体
酶
联轴节(管道)
胰岛素
生物化学
计算生物学
色谱法
分子生物学
内科学
机械工程
医学
工程类
生物
作者
Ponnusamy Nandhakumar,Omeed Djassemi,Ada Raucci,An-Yi Chang,Christopher Cheung,Yuma Dugas,Jordan Silberman,Sofia Morales-Fermin,Samar S. Sandhu,Maria Reynoso,Tamoghna Saha,Stefano Cinti,Joseph Wang
标识
DOI:10.1021/acs.analchem.4c04289
摘要
Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip. The insulin voltammetric sensor employs a G-quadraplex methylene-blue-modified aptamer, while the amperometric biocatalytic glucose sensor utilizes a second-generation mediator-based approach. Simultaneous reagent-less sensing of I and G has been achieved by addressing key challenges. These include combining different surface chemistries, assay formats, and detection principles at closely spaced working electrodes and the substantially different concentration levels of the I and G targets. An attractive analytical performance, with no apparent crosstalk, is demonstrated for the simultaneous detection of millimolar G concentrations and picomolar I concentrations in single microliter serum or saliva sample droplets. This dual biosensor offers rapid, cost-effective, and reliable monitoring, addressing the unmet need for integrated multiplexed diabetes biomarker detection in decentralized settings. Such integration of enzymatic and aptamer-based bioassays could greatly expand the scope of decentralized testing in healthcare beyond diabetes care.
科研通智能强力驱动
Strongly Powered by AbleSci AI