Reliable genotyping of recombinant genomes using a robust hidden Markov model

单倍型 隐马尔可夫模型 生物 基因组 遗传学 计算生物学 基因分型 染色体 细菌人工染色体 同源重组 计算机科学 人工智能 等位基因 基因 基因型
作者
Rafael Campos‐Martin,Sophia Schmickler,Manish Goel,Korbinian Schneeberger,Achim Tresch
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:192 (2): 821-836 被引量:5
标识
DOI:10.1093/plphys/kiad191
摘要

Abstract Meiotic recombination is an essential mechanism during sexual reproduction and includes the exchange of chromosome segments between homologous chromosomes. New allelic combinations are transmitted to the new generation, introducing novel genetic variation in the offspring genomes. With the improvement of high-throughput whole-genome sequencing technologies, large numbers of recombinant individuals can now be sequenced with low sequencing depth at low costs, necessitating computational methods for reconstructing their haplotypes. The main challenge is the uncertainty in haplotype calling that arises from the low information content of a single genomic position. Straightforward sliding window-based approaches are difficult to tune and fail to place recombination breakpoints precisely. Hidden Markov model (HMM)-based approaches, on the other hand, tend to over-segment the genome. Here, we present RTIGER, an HMM-based model that exploits in a mathematically precise way the fact that true chromosome segments typically have a certain minimum length. We further separate the task of identifying the correct haplotype sequence from the accurate placement of haplotype borders, thereby maximizing the accuracy of border positions. By comparing segmentations based on simulated data with known underlying haplotypes, we highlight the reasons for RTIGER outperforming traditional segmentation approaches. We then analyze the meiotic recombination pattern of segregants of 2 Arabidopsis (Arabidopsis thaliana) accessions and a previously described hyper-recombining mutant. RTIGER is available as an R package with an efficient Julia implementation of the core algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助旷野采纳,获得10
刚刚
乐乐应助落花生采纳,获得10
1秒前
华彬心发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
赘婿应助沉静的煎蛋采纳,获得10
2秒前
weed6完成签到,获得积分10
2秒前
李健应助快乐访蕊采纳,获得10
3秒前
包容友儿发布了新的文献求助10
3秒前
鱿鱼完成签到,获得积分10
3秒前
现代的妍完成签到,获得积分10
3秒前
4秒前
孙亚博完成签到,获得积分10
4秒前
阿良完成签到,获得积分10
4秒前
唐泽雪穗应助米忧伤基罗采纳,获得10
6秒前
田様应助米忧伤基罗采纳,获得10
6秒前
孙亚博发布了新的文献求助10
9秒前
yx完成签到,获得积分10
9秒前
Carina7684发布了新的文献求助30
11秒前
桐桐应助欣嫩谷采纳,获得10
11秒前
yyyy完成签到,获得积分10
11秒前
打打应助笨笨的鬼神采纳,获得10
13秒前
一颗小洋葱完成签到 ,获得积分10
15秒前
15秒前
doskkk关注了科研通微信公众号
16秒前
君君完成签到,获得积分10
17秒前
17秒前
叶潭完成签到,获得积分10
18秒前
CHENXIN532完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助150
18秒前
大个应助胡图图采纳,获得10
19秒前
19秒前
打打应助hd采纳,获得10
20秒前
20秒前
快乐访蕊发布了新的文献求助10
21秒前
21秒前
旷野发布了新的文献求助10
21秒前
zhut发布了新的文献求助10
24秒前
yyyy发布了新的文献求助30
25秒前
26秒前
郭素玲完成签到 ,获得积分10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142528
求助须知:如何正确求助?哪些是违规求助? 4340819
关于积分的说明 13518240
捐赠科研通 4180740
什么是DOI,文献DOI怎么找? 2292579
邀请新用户注册赠送积分活动 1293245
关于科研通互助平台的介绍 1235752