Structure-preserving quality improvement of cone beam CT images using contrastive learning

霍恩斯菲尔德秤 均方误差 人工智能 锥束ct 特征(语言学) 图像质量 计算机科学 模式识别(心理学) 锥束ct 均方根 噪音(视频) 数学 核医学 计算机断层摄影术 图像(数学) 医学 统计 放射科 工程类 哲学 电气工程 语言学
作者
Se-Ryong Kang,Woncheol Shin,Su Yang,Jo‐Eun Kim,Kyung‐Hoe Huh,Sam-Sun Lee,Min-Suk Heo,Won-Jin Yi
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106803-106803 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106803
摘要

Cone-beam CT (CBCT) is widely used in dental clinics but exhibits limitations in assessing soft tissue pathology because of its lack of contrast resolution and low Hounsfield Units (HU) quantification accuracy. We aimed to increase the image quality and HU accuracy of CBCTs while preserving anatomical structures. We generated CT-like images from CBCT images using a patchwise contrastive learning-based GAN model. Our model was trained on unpaired CT and CBCT datasets with the novel combination of losses and the feature extractor pretrained on our training dataset. We evaluated the quality of the images generated by our model in terms of Fréchet inception distance (FID), peak signal-to-noise ratio (PSNR), mean absolute error (MAE), and root mean square error (RMSE). Additionally, the structure preservation performance was assessed by the structure score. As a result, the generated CT-like images by our model were significantly superior to those generated by various baseline models in terms of FID, PSNR, MAE, RMSE, and structure score. Therefore, we demonstrated that our model provided the complementary benefits of preserving the anatomical structures of the input CBCT images and improving the image quality to be similar to those of CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
super chan发布了新的文献求助10
2秒前
大模型应助汪汪采纳,获得10
3秒前
3秒前
3秒前
L_x完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
gybreeze完成签到,获得积分10
4秒前
小二郎应助俞璐采纳,获得10
6秒前
6秒前
7秒前
7秒前
外向的书蝶完成签到,获得积分10
7秒前
bofu发布了新的文献求助10
7秒前
山真页发布了新的文献求助10
7秒前
Nefelibate完成签到,获得积分20
9秒前
lijingwen发布了新的文献求助10
9秒前
10秒前
10秒前
gab发布了新的文献求助10
11秒前
nenoaowu应助曲听安采纳,获得10
11秒前
11秒前
12秒前
12秒前
左翎完成签到,获得积分20
13秒前
14秒前
李爱国应助彭佳丽采纳,获得10
14秒前
小酸完成签到 ,获得积分10
15秒前
16秒前
liyuxuan发布了新的文献求助10
16秒前
华仔应助俞璐采纳,获得10
16秒前
17秒前
bofu发布了新的文献求助10
18秒前
慕青应助lijingwen采纳,获得10
19秒前
晨霭微凉发布了新的文献求助10
20秒前
今天只做一件事完成签到,获得积分0
20秒前
21秒前
ffff发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451