Structure-preserving quality improvement of cone beam CT images using contrastive learning

霍恩斯菲尔德秤 均方误差 人工智能 锥束ct 特征(语言学) 图像质量 计算机科学 模式识别(心理学) 锥束ct 均方根 噪音(视频) 数学 核医学 计算机断层摄影术 图像(数学) 医学 统计 放射科 语言学 哲学 电气工程 工程类
作者
Se-Ryong Kang,Woncheol Shin,Su Yang,Jo‐Eun Kim,Kyung‐Hoe Huh,Sam-Sun Lee,Min-Suk Heo,Won-Jin Yi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106803-106803 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106803
摘要

Cone-beam CT (CBCT) is widely used in dental clinics but exhibits limitations in assessing soft tissue pathology because of its lack of contrast resolution and low Hounsfield Units (HU) quantification accuracy. We aimed to increase the image quality and HU accuracy of CBCTs while preserving anatomical structures. We generated CT-like images from CBCT images using a patchwise contrastive learning-based GAN model. Our model was trained on unpaired CT and CBCT datasets with the novel combination of losses and the feature extractor pretrained on our training dataset. We evaluated the quality of the images generated by our model in terms of Fréchet inception distance (FID), peak signal-to-noise ratio (PSNR), mean absolute error (MAE), and root mean square error (RMSE). Additionally, the structure preservation performance was assessed by the structure score. As a result, the generated CT-like images by our model were significantly superior to those generated by various baseline models in terms of FID, PSNR, MAE, RMSE, and structure score. Therefore, we demonstrated that our model provided the complementary benefits of preserving the anatomical structures of the input CBCT images and improving the image quality to be similar to those of CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa应助Zhou采纳,获得10
1秒前
1秒前
知行者完成签到 ,获得积分10
1秒前
1秒前
zzeru21完成签到,获得积分10
2秒前
2秒前
核桃发布了新的文献求助30
3秒前
3秒前
鸭子发布了新的文献求助10
4秒前
4秒前
小邢完成签到,获得积分10
5秒前
5秒前
TCL完成签到,获得积分10
6秒前
oywc应助felix采纳,获得10
6秒前
十一发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助里大炮采纳,获得10
7秒前
世界尽头完成签到,获得积分10
7秒前
8秒前
Herman发布了新的文献求助10
8秒前
科研通AI5应助RR采纳,获得10
8秒前
8秒前
JamesPei应助kou采纳,获得10
9秒前
科研通AI6应助season采纳,获得30
10秒前
浮游应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
JF123_发布了新的文献求助10
11秒前
CipherSage应助科研通管家采纳,获得30
11秒前
充电宝应助科研通管家采纳,获得30
11秒前
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
Akiba完成签到,获得积分10
12秒前
完美世界应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652