亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning-based lens wavefront aberration recovery

波前 泽尼克多项式 光学 自适应光学 球差 波前传感器 变形镜 计算机科学 点扩散函数 光学像差 物理 镜头(地质) 人工智能
作者
Li‐Qun Chen,Yuyao Hu,Jiewen Nie,Tianfan Xue,Jinwei Gu
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (11): 18931-18931
标识
DOI:10.1364/oe.521125
摘要

Wavefront aberration describes the deviation of a wavefront in an imaging system from a desired perfect shape, such as a plane or a sphere, which may be caused by a variety of factors, such as imperfections in optical equipment, atmospheric turbulence, and the physical properties of imaging subjects and medium. Measuring the wavefront aberration of an imaging system is a crucial part of modern optics and optical engineering, with a variety of applications such as adaptive optics, optical testing, microscopy, laser system design, and ophthalmology. While there are dedicated wavefront sensors that aim to measure the phase of light, they often exhibit some drawbacks, such as higher cost and limited spatial resolution compared to regular intensity measurement. In this paper, we introduce a lightweight and practical learning-based method, named LWNet, to recover the wavefront aberration for an imaging system from a single intensity measurement. Specifically, LWNet takes a measured point spread function (PSF) as input and recovers the wavefront aberration with a two-stage network. The first stage network estimates an initial wavefront aberration via supervised learning, and the second stage network further optimizes the wavefront aberration via self-supervised learning by enforcing the statistical priors and physical constraints of wavefront aberrations via Zernike decomposition. For supervised learning, we created a synthetic PSF-wavefront aberration dataset via ray tracing of 88 lenses. Experimental results show that even trained with simulated data, LWNet works well for wavefront aberration estimation of real imaging systems and consistently outperforms prior learning-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
橘子完成签到,获得积分20
5秒前
笨笨的怜雪完成签到 ,获得积分10
13秒前
14秒前
SYLH应助zhangqin采纳,获得10
18秒前
21秒前
义气的元柏完成签到 ,获得积分10
23秒前
彭于晏应助姜姜姜采纳,获得10
35秒前
杳鸢应助qwq采纳,获得10
37秒前
MROU应助橘子采纳,获得10
45秒前
Ephemeral完成签到 ,获得积分10
47秒前
光亮曼云发布了新的文献求助10
55秒前
小怪兽不吃人完成签到,获得积分10
56秒前
MROU应助橘子采纳,获得10
1分钟前
幽壑之潜蛟完成签到,获得积分0
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
zhao123123完成签到 ,获得积分10
1分钟前
姜姜姜发布了新的文献求助10
1分钟前
liyt完成签到 ,获得积分10
1分钟前
Linda应助科研小菜鸡采纳,获得10
1分钟前
1分钟前
汉堡包应助科研小菜鸡采纳,获得10
1分钟前
仙贝应助科研小菜鸡采纳,获得10
1分钟前
充电宝应助科研小菜鸡采纳,获得10
1分钟前
Orange应助科研小菜鸡采纳,获得10
1分钟前
慕青应助科研小菜鸡采纳,获得10
1分钟前
1分钟前
1分钟前
科研小菜鸡完成签到,获得积分10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
SYLH应助执着的怜珊采纳,获得10
2分钟前
缪尔岚完成签到,获得积分10
2分钟前
幽壑之潜蛟应助the兰采纳,获得10
2分钟前
学习多快乐完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LiAng发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050848
关于积分的说明 9022912
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502781
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387