Promoting intelligent IoT-driven logistics through integrating dynamic demand and sustainable logistics operations

计算机科学 车辆路径问题 稳健性(进化) 活力 运筹学 布线(电子设计自动化) 启发式 数学优化 工程类 数学 计算机网络 生物化学 化学 物理 量子力学 基因 操作系统
作者
Jianxin Wang,Ming K. Lim,Weihua Liu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:185: 103539-103539
标识
DOI:10.1016/j.tre.2024.103539
摘要

Developing a more convenient and sustainable logistics delivery operation model has become a consensus need for both academics and practitioners. However, the existing literature has focused on the impact of dynamic features of IoT customers on the distance cost of vehicles (DCV) and quantity cost of vehicles (QCV) in the field of the vehicle routing problem with time windows (VRPTW). Moreover, only a few application scenarios have been considered. This paper focuses on the perspective of intelligent logistics development to research the impact of IoT customers' dynamic demand on the VRPTW. A mathematical model is established to respond to the dynamic demands of IoT customers with the goal of minimizing the distance cost. A strategy for solving the dynamic VRPTW (DVRPTW) based on time slices is developed, and an improved tabu search (I-TS) optimization algorithm is proposed to solve a given delivery business case. In simulation experiments, the proposed I-TS solution and another known best solution (namely, Solomon) are compared, and the results show the superior performance of the I-TS algorithm in reducing the DCV and QCV. Furthermore, the case study explores the relationship between the degree of dynamism (DoD), DCV and QCV under two scenarios (responding and not responding to dynamic demands of IoT customers). It is concluded that fluctuations of the DoD in a certain range affect only the DCV and not the QCV. Large-capacity vehicles can improve the robustness of the route scheme to dynamic demands. In addition, decomposing dynamic issues in space through time slicing effectively reduces the complexity of the DVRPTW solution. This research also aims to assist practitioners in better formulating dynamic delivery routes as well as policy makers in developing intelligent delivery operation models. Finally, limitations and future research directions are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃年糕发布了新的文献求助10
1秒前
醉熏的盼曼完成签到,获得积分10
1秒前
1秒前
外向梦安完成签到,获得积分10
1秒前
西红柿有股番茄味完成签到,获得积分10
1秒前
徐徐发布了新的文献求助10
2秒前
鲨鱼鲨鱼鲨鱼完成签到,获得积分10
2秒前
认真柠檬完成签到,获得积分10
2秒前
NexusExplorer应助xm采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
4秒前
马建国完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
4秒前
1221211应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得30
4秒前
zdd完成签到 ,获得积分20
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
喜悦中道应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
1221211应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
巴巴塔应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
典雅的谷槐完成签到,获得积分10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762