已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Latency-aware Unified Dynamic Networks for Efficient Image Recognition

计算机科学 人工智能 延迟(音频) 图像处理 计算机视觉 模式识别(心理学) 图像(数学) 电信
作者
Yizeng Han,Zeyu Liu,Zhihang Yuan,Yifan Pu,Chaofei Wang,Shiji Song,Gao Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:5
标识
DOI:10.1109/tpami.2024.3393530
摘要

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
核糖体发布了新的文献求助10
5秒前
浮游应助麻瓜采纳,获得10
6秒前
Bihhh完成签到,获得积分10
7秒前
8秒前
hkf发布了新的文献求助10
12秒前
Bihhh发布了新的文献求助10
13秒前
13秒前
范老师完成签到,获得积分10
14秒前
zhuzhu完成签到 ,获得积分10
15秒前
困困困死了完成签到,获得积分10
16秒前
思源应助迷人皮卡丘采纳,获得10
16秒前
17秒前
17秒前
郑总完成签到 ,获得积分10
18秒前
fred发布了新的文献求助10
18秒前
18秒前
19秒前
科研通AI5应助无情的宛菡采纳,获得10
19秒前
丁丽娜发布了新的文献求助10
22秒前
22秒前
23秒前
天天快乐应助ming采纳,获得10
23秒前
ZC完成签到,获得积分10
24秒前
25秒前
angel发布了新的文献求助10
26秒前
文艺凉面完成签到 ,获得积分10
27秒前
28秒前
情怀应助sun采纳,获得30
28秒前
清风发布了新的文献求助10
30秒前
烟花应助lfq1118采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI2S应助CHENCHEN采纳,获得10
30秒前
wanci应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868779
求助须知:如何正确求助?哪些是违规求助? 4160150
关于积分的说明 12900745
捐赠科研通 3914553
什么是DOI,文献DOI怎么找? 2149921
邀请新用户注册赠送积分活动 1168383
关于科研通互助平台的介绍 1070787