亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latency-aware Unified Dynamic Networks for Efficient Image Recognition

计算机科学 人工智能 延迟(音频) 图像处理 计算机视觉 模式识别(心理学) 图像(数学) 电信
作者
Yizeng Han,Zeyu Liu,Zhihang Yuan,Yifan Pu,Chaofei Wang,Shiji Song,Gao Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:5
标识
DOI:10.1109/tpami.2024.3393530
摘要

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Vu1nerable采纳,获得10
33秒前
飞天大南瓜完成签到,获得积分10
36秒前
小龙仔123完成签到 ,获得积分10
49秒前
cc发布了新的文献求助10
1分钟前
情怀应助S1mple采纳,获得10
1分钟前
鹏笑完成签到,获得积分10
1分钟前
李健的小迷弟应助Vu1nerable采纳,获得10
1分钟前
大模型应助Vu1nerable采纳,获得10
2分钟前
cc关注了科研通微信公众号
2分钟前
科研通AI2S应助Vu1nerable采纳,获得10
3分钟前
ky小白白完成签到 ,获得积分10
3分钟前
搜集达人应助Vu1nerable采纳,获得10
3分钟前
尊敬冰姬完成签到,获得积分10
3分钟前
竹青发布了新的文献求助10
3分钟前
天天快乐应助Vu1nerable采纳,获得10
3分钟前
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
尊敬冰姬发布了新的文献求助10
3分钟前
Hello应助Vu1nerable采纳,获得10
4分钟前
在水一方完成签到,获得积分0
4分钟前
鳄鱼发布了新的文献求助10
4分钟前
5分钟前
leapper完成签到 ,获得积分10
5分钟前
顾矜应助Vu1nerable采纳,获得10
5分钟前
5分钟前
5分钟前
cc完成签到,获得积分10
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
科目三应助26岁顶级保安采纳,获得10
6分钟前
科研通AI6应助Vu1nerable采纳,获得10
6分钟前
叫滚滚发布了新的文献求助10
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
check003完成签到,获得积分10
6分钟前
陈尹蓝完成签到 ,获得积分10
6分钟前
NexusExplorer应助Vu1nerable采纳,获得10
6分钟前
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335623
求助须知:如何正确求助?哪些是违规求助? 4473305
关于积分的说明 13921541
捐赠科研通 4367634
什么是DOI,文献DOI怎么找? 2399702
邀请新用户注册赠送积分活动 1392801
关于科研通互助平台的介绍 1364193