Latency-aware Unified Dynamic Networks for Efficient Image Recognition

计算机科学 人工智能 延迟(音频) 图像处理 计算机视觉 模式识别(心理学) 图像(数学) 电信
作者
Yizeng Han,Zeyu Liu,Zhihang Yuan,Yifan Pu,Chaofei Wang,Shiji Song,Gao Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:5
标识
DOI:10.1109/tpami.2024.3393530
摘要

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅的薯片完成签到,获得积分10
1秒前
丘比特应助AI_S采纳,获得10
2秒前
kohu完成签到,获得积分10
2秒前
4秒前
xiaowang发布了新的文献求助10
4秒前
冬天完成签到,获得积分20
4秒前
4秒前
4秒前
瑕不掩瑜发布了新的文献求助10
4秒前
5秒前
Orange应助Cochane采纳,获得10
5秒前
SiDi完成签到,获得积分10
5秒前
5秒前
lyx完成签到,获得积分10
6秒前
linkman发布了新的文献求助10
6秒前
DDD完成签到,获得积分10
6秒前
迪迪大大关注了科研通微信公众号
6秒前
研友_n2QP2L发布了新的文献求助10
7秒前
cooper完成签到 ,获得积分10
7秒前
8秒前
yu发布了新的文献求助10
8秒前
思源应助sunaq采纳,获得10
8秒前
aa发布了新的文献求助10
8秒前
xiaogui完成签到,获得积分10
8秒前
十八完成签到 ,获得积分10
9秒前
李策发布了新的文献求助10
10秒前
搜集达人应助jellorio采纳,获得10
10秒前
10秒前
11秒前
tsukinineko完成签到,获得积分10
11秒前
帕芙芙完成签到,获得积分10
11秒前
张小斌完成签到,获得积分10
11秒前
SciGPT应助涂涂采纳,获得10
12秒前
13秒前
111发布了新的文献求助10
14秒前
易哒哒完成签到,获得积分10
14秒前
14秒前
浮雨微清完成签到,获得积分10
14秒前
yu完成签到,获得积分10
15秒前
包靡靡发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498