Latency-aware Unified Dynamic Networks for Efficient Image Recognition

计算机科学 人工智能 延迟(音频) 图像处理 计算机视觉 模式识别(心理学) 图像(数学) 电信
作者
Yizeng Han,Zeyu Liu,Zhihang Yuan,Yifan Pu,Chaofei Wang,Shiji Song,Gao Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17 被引量:5
标识
DOI:10.1109/tpami.2024.3393530
摘要

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
执着的一兰完成签到,获得积分10
1秒前
清脆天空发布了新的文献求助10
2秒前
村长热爱美丽完成签到 ,获得积分10
2秒前
干干发布了新的文献求助10
2秒前
lizhiqian2024完成签到,获得积分10
3秒前
早日毕业完成签到 ,获得积分10
3秒前
LSHS发布了新的文献求助10
3秒前
DIAPTERA完成签到,获得积分10
4秒前
qiuer7应助Augustines采纳,获得10
4秒前
忐忑的远山完成签到,获得积分10
4秒前
溪鱼发布了新的文献求助20
5秒前
6秒前
Orange应助笨笨的仙人掌采纳,获得10
6秒前
可爱项链完成签到,获得积分10
6秒前
WUWU2435完成签到,获得积分10
7秒前
aaa发布了新的文献求助10
7秒前
7秒前
充电宝应助Allein采纳,获得10
7秒前
慕青应助NXK采纳,获得10
7秒前
仁爱亦巧完成签到 ,获得积分10
8秒前
完美世界应助文具盒采纳,获得10
8秒前
哎呀我去发布了新的文献求助10
8秒前
远山完成签到,获得积分10
9秒前
未来学术司马懿完成签到,获得积分0
9秒前
无辜的醉波完成签到,获得积分10
9秒前
mingjie完成签到,获得积分10
9秒前
科研通AI6应助andy采纳,获得10
9秒前
10秒前
weiye1992完成签到,获得积分10
10秒前
高挑的若雁完成签到 ,获得积分10
11秒前
11秒前
qqq完成签到 ,获得积分10
11秒前
11秒前
Owen应助aaa采纳,获得10
12秒前
西园寺鹿旎完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
雪雪啊发布了新的文献求助10
14秒前
坚定的问梅完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413904
求助须知:如何正确求助?哪些是违规求助? 4530767
关于积分的说明 14125053
捐赠科研通 4446058
什么是DOI,文献DOI怎么找? 2439334
邀请新用户注册赠送积分活动 1431442
关于科研通互助平台的介绍 1409123