Latency-aware Unified Dynamic Networks for Efficient Image Recognition

计算机科学 人工智能 延迟(音频) 图像处理 计算机视觉 模式识别(心理学) 图像(数学) 电信
作者
Yizeng Han,Zeyu Liu,Zhihang Yuan,Yifan Pu,Chaofei Wang,Shiji Song,Gao Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:5
标识
DOI:10.1109/tpami.2024.3393530
摘要

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
saily发布了新的文献求助10
1秒前
1秒前
non完成签到,获得积分20
1秒前
1秒前
dd36完成签到,获得积分10
2秒前
3秒前
香蕉觅云应助瑞瑞刘采纳,获得10
3秒前
CipherSage应助瑞瑞刘采纳,获得10
3秒前
善学以致用应助瑞瑞刘采纳,获得10
3秒前
慕青应助瑞瑞刘采纳,获得10
3秒前
斯文败类应助瑞瑞刘采纳,获得10
3秒前
搜集达人应助瑞瑞刘采纳,获得10
3秒前
3秒前
xiaozhang完成签到 ,获得积分10
4秒前
4秒前
希望天下0贩的0应助不喜采纳,获得10
7秒前
alexyang发布了新的文献求助10
7秒前
8秒前
科研小白发布了新的文献求助10
9秒前
阿飞完成签到,获得积分10
10秒前
404NotFOUND完成签到,获得积分10
11秒前
12秒前
14秒前
FashionBoy应助上弦月采纳,获得10
15秒前
21秒前
稳重向南发布了新的文献求助10
22秒前
23秒前
25秒前
26秒前
CipherSage应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
29秒前
叶博完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539051
求助须知:如何正确求助?哪些是违规求助? 3973321
关于积分的说明 12308435
捐赠科研通 3640147
什么是DOI,文献DOI怎么找? 2004375
邀请新用户注册赠送积分活动 1039763
科研通“疑难数据库(出版商)”最低求助积分说明 928957