A Framework for Segmentation and Classification of Blood Cells Using Generative Adversarial Networks

对抗制 计算机科学 人工智能 分割 生成语法 模式识别(心理学) 图像分割 机器学习
作者
Zakir Khan,Syed Hamad Shirazi,Muhammad Shahzad,Arslan Munir,Asad Rasheed,Yong Xie,Sarah Gul
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/access.2024.3378575
摘要

Blood smear analysis is often used to diagnose diseases like malaria, Anemia, Leukemia, etc. Morphological changes, such as size, shapes, and color, are receiving much attention in pathological analysis.Existing methods for detecting, diagnosing and analyzing blood smears cannot quantify overlapped, irregular boundaries and complex structures.This work proposes and evaluates a framework that utilizes Generative adversarial networks (GANs) for the segmentation and classification of blood elements, that is, white blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) simultaneously.The Generator of the network determines the mapping from microscopic images of blood cells to a confidence map.This mapping stipulates the probabilities of the pixel of the microscopic blood cell images with respect to ground truth.The Discriminator of the network is essential to castigate the mismatch between the microscopic blood cells images and confidence map.Additionally, adversarial learning enables the Generator to generate a qualitative confidence map that is converted into segmented images.We have calculated minimum, maximum, and average losses to judge the performance of the proposed model.We measure structural similarity, peak signal-to-noise ratio, pixel classification error, and finally, classified cells.The proposed framework can analyze all the blood cell elements simultaneously.The proposed framework shows a significant improvement in the segmentation and classification of blood cell elements compared to state-of-the-art techniques.During the training process, generator total loss reduces by 12.18%, 5.39%, and 3.62% for RBCs, WBCs, and PLTs, respectively.Our results demonstrate that the proposed framework outperforms existing state-of-the-art techniques, achieving the highest pixel correctly classified (PCC) ratio for the segmentation of blood cells as 99.8%, 93.4%, and 99.9% for WBCs, RBCs, and PLTs, respectively.Our framework attains 95.45% and 88.89% classification accuracy for WBCs on ALL-IDB-I and ALL-IDB-II datasets.The dataset used for this study can be found at https://drive.google.com/drive/folders/1F7kZ1SRWUD9R6aHLMkj3wsjcHnvlGuwP?usp=sharing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
6秒前
葛三叔发布了新的文献求助10
6秒前
火星上的藏鸟完成签到 ,获得积分10
6秒前
NexusExplorer应助鱼咬羊采纳,获得10
9秒前
Lll发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
13秒前
14秒前
义气小白菜完成签到 ,获得积分10
15秒前
安逸1发布了新的文献求助10
16秒前
神勇凤灵发布了新的文献求助10
17秒前
斯文败类应助jioujg采纳,获得10
18秒前
小xy发布了新的文献求助10
18秒前
背后书雪完成签到 ,获得积分10
19秒前
19秒前
宋小姐冲鸭完成签到,获得积分10
19秒前
19秒前
随机子应助lili采纳,获得10
20秒前
蛋堡完成签到,获得积分10
20秒前
20秒前
21秒前
董球球发布了新的文献求助10
22秒前
22秒前
adam完成签到,获得积分10
23秒前
Akim应助安逸1采纳,获得10
23秒前
24秒前
冷静乌发布了新的文献求助10
24秒前
高大凌寒应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
奥沙利楠发布了新的文献求助10
26秒前
刘贤华完成签到 ,获得积分10
27秒前
29秒前
呆呆完成签到 ,获得积分10
29秒前
郝宝真发布了新的文献求助10
29秒前
善良寒风完成签到,获得积分10
29秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388