Robust Model Watermarking for Image Processing Networks via Structure Consistency

数字水印 水印 稳健性(进化) 计算机科学 人工智能 一致性(知识库) 数据完整性 图像(数学) 数据挖掘 模型攻击 计算机视觉 模式识别(心理学) 机器学习 计算机安全 生物化学 基因 化学
作者
Jie Zhang,Dongdong Chen,Jing Liao,Zehua Ma,Han Fang,Weiming Zhang,Huamin Feng,Gang Hua,Nenghai Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (10): 6985-6992 被引量:2
标识
DOI:10.1109/tpami.2024.3381543
摘要

The intellectual property of deep networks can be easily "stolen" by surrogate model attack. There has been significant progress in protecting the model IP in classification tasks. However, little attention has been devoted to the protection of image processing models. By utilizing consistent invisible spatial watermarks, the work [1] first considered model watermarking for deep image processing networks and demonstrated its efficacy in many downstream tasks. Its success depends on the hypothesis that if a consistent watermark exists in all prediction outputs, that watermark will be learned into the attacker's surrogate model. However, when the attacker uses common data augmentation attacks (e.g., rotate, crop, and resize) during surrogate model training, it will fail because the underlying watermark consistency is destroyed. To mitigate this issue, we propose a new watermarking methodology, "structure consistency", based on which a new deep structure-aligned model watermarking algorithm is designed. Specifically, the embedded watermarks are designed to be aligned with physically consistent image structures, such as edges or semantic regions. Experiments demonstrate that our method is more robust than the baseline in resisting data augmentation attacks. Besides that, we test the generalization ability and robustness of our method to a broader range of adaptive attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小菜鸟完成签到,获得积分10
刚刚
刚刚
西西弗斯完成签到,获得积分10
刚刚
KT2440完成签到,获得积分10
1秒前
顾阿秀发布了新的文献求助10
1秒前
1秒前
1秒前
gnr2000完成签到,获得积分0
1秒前
2秒前
2秒前
BareBear应助赖道之采纳,获得10
2秒前
LEMON完成签到,获得积分10
2秒前
Ava应助buuyoo采纳,获得10
3秒前
情怀应助liuwei采纳,获得10
3秒前
aaefv完成签到,获得积分10
3秒前
小小菜鸟发布了新的文献求助10
3秒前
深情安青应助123采纳,获得10
3秒前
赫初晴完成签到 ,获得积分10
3秒前
平淡的亦丝应助明研采纳,获得20
3秒前
5秒前
库外发布了新的文献求助10
6秒前
汉堡包应助清新的冷松采纳,获得10
6秒前
从心应助LiShin采纳,获得10
6秒前
帅气的听莲完成签到,获得积分10
6秒前
英姑应助Areslcy采纳,获得10
6秒前
善学以致用应助zxz采纳,获得10
7秒前
whatever应助luoshi采纳,获得10
8秒前
8秒前
科研通AI5应助徐徐采纳,获得10
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
shouyu29应助MADKAI采纳,获得10
9秒前
Lucas应助MADKAI采纳,获得10
9秒前
Vii应助MADKAI采纳,获得10
9秒前
李爱国应助MADKAI采纳,获得10
9秒前
李健应助MADKAI采纳,获得10
9秒前
烟花应助MADKAI采纳,获得20
9秒前
香蕉觅云应助MADKAI采纳,获得10
9秒前
科研通AI2S应助MADKAI采纳,获得10
9秒前
Singularity应助MADKAI采纳,获得10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762