Effect of Cr and Ni on mechanical response and microstructural evolution of nanocrystalline ferrite: A molecular dynamics study

材料科学 纳米晶材料 晶界 变形机理 位错 微观结构 材料的强化机理 铁氧体(磁铁) 冶金 分子动力学 固溶强化 流动应力 粒度 复合材料 纳米技术 计算化学 化学
作者
Weiwei Huang,Jinyuan Tang,Weihua Zhou,Jun Wen,Zhuan Li,Kaile Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:273: 109226-109226 被引量:1
标识
DOI:10.1016/j.ijmecsci.2024.109226
摘要

Microalloying plays a critical role in improving the mechanical properties of steel. To offer a better theoretical guide for experimental research at the atomic level, this paper investigated the synergistic mechanism of adding trace amounts of alloy Cr and Ni and the microstructure evolution of nanocrystalline ferrite during the mechanical response process. First-principles calculations were implemented to investigate electronic properties. Hybrid molecular dynamics and Monte Carlo simulations were employed to explore the deformation mechanism under uniaxial tension and scratching. Specifically, comprehensive differences between doped and pure nanocrystalline ferrites were explored regarding local stress-strain state, dislocation evolution, twin expansion, and grain boundary activity. The results show that Cr- and Ni-doped nanocrystalline ferrite has higher strength and better wear resistance. The potential mechanism is that the addition of Cr and Ni enhances the atomic bonding strength with Fe atoms, hinders the movement of dislocations caused by lattice distortion, and suppresses grain boundary slip and migration, thereby improving the resistance to plastic deformation and grain boundary stability. Theoretical calculations based on microstructure indicate that compared to solid solution strengthening, Ni-induced grain boundary strengthening plays a dominant role in improving yield strength. Under large deformation, the trend of mechanical response is reversed. The suppression of dislocation motion by Cr reduces the dislocation density and dislocation entanglement, resulting in flow stress and local scratch force being smaller than that of pure samples. However, the formation of more nanoscale twins and twin-dislocation interactions enhances strain-hardening ability during tensile. Finer nanostructured subgrains are formed under scratching. These results provide valuable insights into the understanding of the strengthening mechanism and plastic deformation mechanism of Cr-Ni system low alloy steel under dynamic loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远完成签到,获得积分10
刚刚
战战完成签到,获得积分10
1秒前
553599712完成签到,获得积分10
3秒前
3秒前
3秒前
pluto完成签到,获得积分10
3秒前
木木完成签到,获得积分0
4秒前
CDH完成签到,获得积分10
4秒前
正直夜安完成签到 ,获得积分10
4秒前
爱吃蜂蜜发布了新的文献求助10
4秒前
风吹而过发布了新的文献求助30
4秒前
HelloJoey完成签到,获得积分10
5秒前
ding应助meme采纳,获得10
5秒前
Wsyyy完成签到 ,获得积分10
5秒前
冰儿菲菲完成签到,获得积分10
6秒前
王小凡完成签到 ,获得积分10
6秒前
6秒前
来弄完成签到,获得积分10
7秒前
zwjy完成签到,获得积分10
7秒前
HelloJoey发布了新的文献求助10
7秒前
清修发布了新的文献求助10
8秒前
王丹宁发布了新的文献求助10
9秒前
溆玉碎兰笑完成签到 ,获得积分10
9秒前
居然是我完成签到,获得积分10
10秒前
疯狂大脑壳完成签到,获得积分10
10秒前
TQ完成签到,获得积分10
10秒前
忙碌的数学人完成签到,获得积分10
10秒前
鲤鱼怀绿完成签到,获得积分10
11秒前
能干的邹完成签到 ,获得积分10
11秒前
酷炫的大碗完成签到,获得积分10
11秒前
欢呼妙菱发布了新的文献求助10
12秒前
ym完成签到 ,获得积分10
12秒前
Yosemite完成签到,获得积分10
12秒前
13秒前
hihi完成签到,获得积分10
13秒前
xuejie完成签到,获得积分10
13秒前
Vanilla完成签到,获得积分10
13秒前
任性铅笔完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259