Effect of Cr and Ni on mechanical response and microstructural evolution of nanocrystalline ferrite: A molecular dynamics study

材料科学 纳米晶材料 晶界 变形机理 位错 微观结构 材料的强化机理 铁氧体(磁铁) 冶金 分子动力学 固溶强化 流动应力 粒度 复合材料 纳米技术 计算化学 化学
作者
Weiwei Huang,Jinyuan Tang,Weihua Zhou,Jun Wen,Zhuan Li,Kaile Li
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:273: 109226-109226 被引量:10
标识
DOI:10.1016/j.ijmecsci.2024.109226
摘要

Microalloying plays a critical role in improving the mechanical properties of steel. To offer a better theoretical guide for experimental research at the atomic level, this paper investigated the synergistic mechanism of adding trace amounts of alloy Cr and Ni and the microstructure evolution of nanocrystalline ferrite during the mechanical response process. First-principles calculations were implemented to investigate electronic properties. Hybrid molecular dynamics and Monte Carlo simulations were employed to explore the deformation mechanism under uniaxial tension and scratching. Specifically, comprehensive differences between doped and pure nanocrystalline ferrites were explored regarding local stress-strain state, dislocation evolution, twin expansion, and grain boundary activity. The results show that Cr- and Ni-doped nanocrystalline ferrite has higher strength and better wear resistance. The potential mechanism is that the addition of Cr and Ni enhances the atomic bonding strength with Fe atoms, hinders the movement of dislocations caused by lattice distortion, and suppresses grain boundary slip and migration, thereby improving the resistance to plastic deformation and grain boundary stability. Theoretical calculations based on microstructure indicate that compared to solid solution strengthening, Ni-induced grain boundary strengthening plays a dominant role in improving yield strength. Under large deformation, the trend of mechanical response is reversed. The suppression of dislocation motion by Cr reduces the dislocation density and dislocation entanglement, resulting in flow stress and local scratch force being smaller than that of pure samples. However, the formation of more nanoscale twins and twin-dislocation interactions enhances strain-hardening ability during tensile. Finer nanostructured subgrains are formed under scratching. These results provide valuable insights into the understanding of the strengthening mechanism and plastic deformation mechanism of Cr-Ni system low alloy steel under dynamic loading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助曾辉采纳,获得10
1秒前
1秒前
蹦蹦灯儿发布了新的文献求助10
1秒前
默默筮发布了新的文献求助10
1秒前
爱喝酸奶发布了新的文献求助10
1秒前
神奇宝贝完成签到,获得积分10
1秒前
2秒前
bensenback完成签到,获得积分10
2秒前
ok完成签到,获得积分10
2秒前
3秒前
Criminology34举报努力搬砖求助涉嫌违规
3秒前
7890733发布了新的文献求助10
3秒前
Natsu完成签到,获得积分10
3秒前
Accelerator完成签到,获得积分10
3秒前
zheng发布了新的文献求助30
4秒前
4秒前
噗咔咔ya完成签到 ,获得积分10
4秒前
5秒前
cc发布了新的文献求助10
5秒前
pcr163应助传统的宝莹采纳,获得200
5秒前
5秒前
5秒前
Nyxia发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
YXYWZMSZ发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分20
6秒前
7秒前
托尔斯泰完成签到,获得积分10
7秒前
水水完成签到 ,获得积分10
7秒前
顾易完成签到,获得积分10
7秒前
Duomo完成签到 ,获得积分10
7秒前
Dtt发布了新的文献求助10
8秒前
科研通AI6应助木玄机采纳,获得30
8秒前
ppboyindream发布了新的文献求助10
8秒前
宅了五百年完成签到,获得积分10
8秒前
8秒前
细心的棉花糖关注了科研通微信公众号
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480