Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 政治学 法学 功率(物理) 物理 量子力学 政治
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助123采纳,获得30
1秒前
充电宝应助zengli采纳,获得10
1秒前
LiDaYang完成签到,获得积分10
1秒前
努力学习发布了新的文献求助10
1秒前
1秒前
2秒前
夏之星完成签到,获得积分20
2秒前
Grayball应助啤酒半斤采纳,获得10
2秒前
3秒前
123jjj完成签到,获得积分10
4秒前
自然发布了新的文献求助10
4秒前
4秒前
shone完成签到,获得积分10
4秒前
hhw完成签到,获得积分10
5秒前
LFY完成签到,获得积分10
5秒前
5秒前
跳跃的以蕊完成签到,获得积分20
5秒前
PTL完成签到,获得积分10
6秒前
6秒前
成就莞发布了新的文献求助30
6秒前
大个应助夏之星采纳,获得10
7秒前
可cabd完成签到,获得积分10
7秒前
古怪小枫发布了新的文献求助10
8秒前
jerry发布了新的文献求助10
8秒前
老天师一巴掌完成签到 ,获得积分10
9秒前
小庄完成签到 ,获得积分10
10秒前
路之遥兮完成签到,获得积分20
10秒前
波波玛奇朵完成签到,获得积分10
10秒前
深情安青应助小宇采纳,获得10
10秒前
小星星完成签到 ,获得积分0
10秒前
11秒前
11秒前
Ziyi_Xu完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
yx完成签到,获得积分0
11秒前
12秒前
Li完成签到,获得积分10
12秒前
PTL发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672