已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 政治学 法学 功率(物理) 物理 量子力学 政治
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大布完成签到,获得积分10
12秒前
Oculus完成签到 ,获得积分10
13秒前
1q完成签到,获得积分10
16秒前
20秒前
852应助smida采纳,获得10
20秒前
lxl220完成签到 ,获得积分10
20秒前
向前葱发布了新的文献求助10
28秒前
37秒前
archiz发布了新的文献求助10
43秒前
44秒前
45秒前
吴博文完成签到,获得积分20
46秒前
47秒前
天开眼完成签到 ,获得积分10
48秒前
向前葱完成签到,获得积分10
51秒前
54秒前
吴博文发布了新的文献求助10
55秒前
咕噜咕噜圈圈完成签到,获得积分10
56秒前
1分钟前
szx233完成签到 ,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
淡然玉米发布了新的文献求助10
1分钟前
Legend_完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助吴博文采纳,获得10
1分钟前
1分钟前
chongziccc完成签到 ,获得积分10
1分钟前
pp发布了新的文献求助10
1分钟前
动听不二完成签到,获得积分10
1分钟前
1分钟前
Charles完成签到,获得积分0
1分钟前
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
smida发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366475
求助须知:如何正确求助?哪些是违规求助? 4495121
关于积分的说明 13995390
捐赠科研通 4399432
什么是DOI,文献DOI怎么找? 2416683
邀请新用户注册赠送积分活动 1409448
关于科研通互助平台的介绍 1384563