亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 物理 政治 量子力学 功率(物理) 法学 政治学
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助北林采纳,获得10
2秒前
核桃应助ff相信好事来临采纳,获得10
4秒前
张张发布了新的文献求助10
6秒前
金鱼完成签到,获得积分10
7秒前
Perry完成签到,获得积分10
12秒前
15秒前
18秒前
激动的鹰发布了新的文献求助10
19秒前
lk完成签到,获得积分10
20秒前
Wxt完成签到 ,获得积分10
20秒前
Owen应助科研通管家采纳,获得10
23秒前
GPTea应助科研通管家采纳,获得20
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
lk发布了新的文献求助10
23秒前
ANG完成签到 ,获得积分10
29秒前
nano完成签到 ,获得积分10
30秒前
本征值完成签到 ,获得积分20
34秒前
chenwang发布了新的文献求助10
36秒前
研友_ZragOn完成签到,获得积分10
38秒前
43秒前
干饭大大大大大王完成签到,获得积分10
44秒前
chenwang完成签到,获得积分20
44秒前
宋宋完成签到 ,获得积分10
45秒前
49秒前
港港完成签到 ,获得积分10
50秒前
55秒前
可久斯基完成签到 ,获得积分10
56秒前
59秒前
59秒前
1分钟前
scxl2000完成签到,获得积分10
1分钟前
小小白发布了新的文献求助10
1分钟前
二三语逢山外山完成签到 ,获得积分10
1分钟前
桐桐应助奥里给医学生采纳,获得10
1分钟前
余铸海完成签到,获得积分10
1分钟前
爆米花应助lk采纳,获得10
1分钟前
陈郭安生完成签到 ,获得积分10
1分钟前
qnd完成签到,获得积分10
1分钟前
斯文的凝珍完成签到,获得积分10
1分钟前
迷路的沛芹完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847