Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 政治学 法学 功率(物理) 物理 量子力学 政治
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的芳应助wys2493采纳,获得10
刚刚
碧蓝寄凡完成签到,获得积分20
刚刚
萧水白应助csy采纳,获得10
刚刚
郭郭郭郭完成签到,获得积分10
1秒前
1秒前
友好似狮发布了新的文献求助40
1秒前
2秒前
skj发布了新的文献求助10
2秒前
YangyangLiu发布了新的文献求助10
2秒前
晶晶完成签到 ,获得积分10
3秒前
九九发布了新的文献求助20
3秒前
子车茗应助小小邹采纳,获得10
3秒前
xiaobai发布了新的文献求助10
3秒前
1231完成签到,获得积分10
3秒前
nice完成签到,获得积分20
4秒前
aiiLuX发布了新的文献求助10
5秒前
cuipanda发布了新的文献求助30
5秒前
5秒前
cui发布了新的文献求助10
5秒前
大模型应助taoeric采纳,获得200
6秒前
Lucas应助zwhy采纳,获得10
6秒前
黑米粥发布了新的文献求助10
6秒前
FashionBoy应助忧虑的鹭洋采纳,获得10
6秒前
spinarm发布了新的文献求助10
6秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
LO7pM2应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助SQDHZJ采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
mhl11应助科研通管家采纳,获得10
7秒前
xjcy应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
8秒前
情怀应助林登万采纳,获得10
8秒前
思源应助是小曹啊采纳,获得10
9秒前
9秒前
wyx完成签到,获得积分10
9秒前
YangyangLiu完成签到,获得积分10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534