Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 政治学 法学 功率(物理) 物理 量子力学 政治
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhixiang完成签到,获得积分10
3秒前
阿孝完成签到,获得积分20
4秒前
未若从前i发布了新的文献求助10
4秒前
Gao完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
英吉利25发布了新的文献求助10
8秒前
yzm完成签到,获得积分10
9秒前
lilei完成签到 ,获得积分10
9秒前
11秒前
11秒前
xiao发布了新的文献求助10
12秒前
12秒前
HanFeiZi完成签到 ,获得积分10
13秒前
13秒前
MLJ完成签到 ,获得积分10
14秒前
彩色尔珍发布了新的文献求助10
17秒前
Eureka发布了新的文献求助10
17秒前
开心发布了新的文献求助10
19秒前
酷酷的紫南完成签到 ,获得积分10
20秒前
CipherSage应助Evian79167采纳,获得30
20秒前
Ferry完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
zxt完成签到,获得积分10
24秒前
HAHA完成签到,获得积分10
25秒前
morning完成签到,获得积分10
25秒前
26秒前
水草帽完成签到 ,获得积分10
26秒前
26秒前
畅快的刚完成签到,获得积分10
28秒前
研友_LNMmW8发布了新的文献求助10
29秒前
30秒前
感谢大哥的帮助完成签到 ,获得积分10
32秒前
33秒前
天真的马里奥完成签到,获得积分10
33秒前
帅气男孩完成签到,获得积分10
34秒前
时笙发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587