已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 政治学 法学 功率(物理) 物理 量子力学 政治
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fancy应助能量球采纳,获得20
刚刚
爆米花应助富贵儿采纳,获得10
1秒前
吴毅小汤发布了新的文献求助10
1秒前
kalcspin完成签到 ,获得积分10
2秒前
3秒前
苗条八宝粥完成签到,获得积分10
5秒前
小米的稻田完成签到 ,获得积分10
7秒前
优秀星星完成签到,获得积分10
7秒前
9秒前
benshu发布了新的文献求助10
9秒前
ontheway发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
CipherSage应助Tsuki采纳,获得20
11秒前
張医铄完成签到,获得积分10
13秒前
自觉的雨南完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
寒冷完成签到,获得积分10
17秒前
Arthur发布了新的文献求助10
18秒前
19秒前
奎奎发布了新的文献求助10
20秒前
酷bile发布了新的文献求助10
21秒前
憨憨医生发布了新的文献求助10
21秒前
21秒前
霸气的雪糕完成签到 ,获得积分10
21秒前
22秒前
林林宁宁完成签到 ,获得积分10
22秒前
陈M雯发布了新的文献求助10
23秒前
富贵儿发布了新的文献求助10
24秒前
qqq发布了新的文献求助10
26秒前
ontheway发布了新的文献求助10
26秒前
27秒前
29秒前
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763321
求助须知:如何正确求助?哪些是违规求助? 5540592
关于积分的说明 15404702
捐赠科研通 4899136
什么是DOI,文献DOI怎么找? 2635354
邀请新用户注册赠送积分活动 1583459
关于科研通互助平台的介绍 1538528