Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 物理 政治 量子力学 功率(物理) 法学 政治学
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李繁蕊发布了新的文献求助10
刚刚
老阎应助河鲸采纳,获得50
1秒前
yck发布了新的文献求助30
2秒前
3秒前
明年今日发布了新的文献求助20
3秒前
4秒前
哈哈发布了新的文献求助10
4秒前
chilli完成签到 ,获得积分10
5秒前
6秒前
7秒前
LLoud发布了新的文献求助10
8秒前
沙特完成签到,获得积分10
9秒前
科目三应助奋斗的延恶采纳,获得10
10秒前
易达发布了新的文献求助30
12秒前
田様应助拼搏的二哈采纳,获得10
13秒前
柒柒牧马发布了新的文献求助10
13秒前
赚大钱发布了新的文献求助10
13秒前
15秒前
15秒前
疯狂的沛岚完成签到,获得积分10
16秒前
16秒前
生动的采枫完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
朝韵完成签到 ,获得积分10
18秒前
Butter完成签到,获得积分20
19秒前
小杨完成签到 ,获得积分10
19秒前
麦子发布了新的文献求助10
20秒前
20秒前
21秒前
sun发布了新的文献求助10
21秒前
陈文娟发布了新的文献求助10
24秒前
张瑞彬完成签到,获得积分10
24秒前
25秒前
柒柒牧马完成签到,获得积分10
25秒前
莫宝发布了新的文献求助30
26秒前
fjnm完成签到,获得积分10
27秒前
27秒前
田様应助麦子采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070