Towards reliable healthcare Imaging: conditional contrastive generative adversarial network for handling class imbalancing in MR Images

判别式 人工智能 计算机科学 分割 模式识别(心理学) 发电机(电路理论) 像素 代表(政治) 班级(哲学) 相似性(几何) 机器学习 图像(数学) 物理 政治 量子力学 功率(物理) 法学 政治学
作者
Lijuan Cui,Dengao Li,Xiaofeng Yang,Chao Liu
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e2064-e2064
标识
DOI:10.7717/peerj-cs.2064
摘要

Background Medical imaging datasets frequently encounter a data imbalance issue, where the majority of pixels correspond to healthy regions, and the minority belong to affected regions. This uneven distribution of pixels exacerbates the challenges associated with computer-aided diagnosis. The networks trained with imbalanced data tends to exhibit bias toward majority classes, often demonstrate high precision but low sensitivity. Method We have designed a new network based on adversarial learning namely conditional contrastive generative adversarial network (CCGAN) to tackle the problem of class imbalancing in a highly imbalancing MRI dataset. The proposed model has three new components: (1) class-specific attention, (2) region rebalancing module (RRM) and supervised contrastive-based learning network (SCoLN). The class-specific attention focuses on more discriminative areas of the input representation, capturing more relevant features. The RRM promotes a more balanced distribution of features across various regions of the input representation, ensuring a more equitable segmentation process. The generator of the CCGAN learns pixel-level segmentation by receiving feedback from the SCoLN based on the true negative and true positive maps. This process ensures that final semantic segmentation not only addresses imbalanced data issues but also enhances classification accuracy. Results The proposed model has shown state-of-art-performance on five highly imbalance medical image segmentation datasets. Therefore, the suggested model holds significant potential for application in medical diagnosis, in cases characterized by highly imbalanced data distributions. The CCGAN achieved the highest scores in terms of dice similarity coefficient (DSC) on various datasets: 0.965 ± 0.012 for BUS2017, 0.896 ± 0.091 for DDTI, 0.786 ± 0.046 for LiTS MICCAI 2017, 0.712 ± 1.5 for the ATLAS dataset, and 0.877 ± 1.2 for the BRATS 2015 dataset. DeepLab-V3 follows closely, securing the second-best position with DSC scores of 0.948 ± 0.010 for BUS2017, 0.895 ± 0.014 for DDTI, 0.763 ± 0.044 for LiTS MICCAI 2017, 0.696 ± 1.1 for the ATLAS dataset, and 0.846 ± 1.4 for the BRATS 2015 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mp4发布了新的文献求助10
刚刚
我是125发布了新的文献求助10
刚刚
xiemei完成签到 ,获得积分20
刚刚
刚刚
科研通AI5应助欣喜的颜演采纳,获得10
1秒前
kkkk完成签到,获得积分10
1秒前
2秒前
Rui完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
tangzanwayne完成签到 ,获得积分10
5秒前
打打应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
鑫鑫发布了新的文献求助10
6秒前
Didibabawoo发布了新的文献求助10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
十一应助科研通管家采纳,获得10
6秒前
asd_1应助科研通管家采纳,获得10
6秒前
沿途有你发布了新的文献求助10
7秒前
tao完成签到,获得积分10
7秒前
打打应助w_采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
海格发布了新的文献求助10
8秒前
9秒前
aaaaaa完成签到,获得积分10
9秒前
解niu完成签到,获得积分10
9秒前
Fanorm发布了新的文献求助10
9秒前
biue发布了新的文献求助20
10秒前
11秒前
12秒前
13秒前
我是老大应助DWD采纳,获得10
13秒前
粗心的谷蕊完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573492
求助须知:如何正确求助?哪些是违规求助? 3993796
关于积分的说明 12363945
捐赠科研通 3667080
什么是DOI,文献DOI怎么找? 2021013
邀请新用户注册赠送积分活动 1055202
科研通“疑难数据库(出版商)”最低求助积分说明 942593