碳化
材料科学
碳纳米管
阳极
聚合物
化学工程
碳纤维
微波食品加热
纳米技术
化学
复合材料
电极
扫描电子显微镜
物理
工程类
物理化学
复合数
量子力学
作者
Gyeongbeom Ryoo,Jiwon Shin,Byeong Guk Kim,Do Geun Lee,Joong Tark Han,Byeongho Park,Youngseok Oh,Seung Yol Jeong,Se-Hee Lee,Dong Yun Lee,Daeho Kim,Jong Hwan Park
标识
DOI:10.1016/j.cej.2024.154081
摘要
Hard carbons (HCs) are excellent anode materials for sodium-ion batteries (SIBs). However, the carbonization and granulation of HC powders involve complex processes and require considerable energy. Here, we developed a facile method for manufacturing HC anodes for SIBs via a novel microwave induction heating (MIH) process for polymer/single-walled carbon nanotube (SWCNT) films. Numerical simulations solving electromagnetic field and heat transfer problems revealed the MIH mechanism; the electric current induced by the applied microwave enables direct Joule heating of the SWCNT networks in the composite film. Consequently, the composite films could be heated to the target temperatures (800–1400 °C) and free-standing HC/SWCNT anodes could be prepared by applying MIH for only 30 s. Comparative analyses confirmed that ultrafast MIH is a reliable technique for producing HC anodes and can replace conventional carbonization processes which require a high-temperature furnace. Moreover, the HC/SWCNT anodes prepared by the ultrafast MIH were successfully applied to the SIB full cells. Finally, the feasibility of MIH for scalable roll-to-roll production of HC anodes was verified through local heating tests using a circular sheet larger than a resonator.
科研通智能强力驱动
Strongly Powered by AbleSci AI