SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction

计算机科学 人工智能 图形 模式识别(心理学) 卷积神经网络 特征提取 数据挖掘 机器学习 计算生物学 理论计算机科学 生物
作者
Junliang Shang,Linqian Zhao,Xin He,Xianghan Meng,Limin Zhang,Daohui Ge,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:2
标识
DOI:10.1109/jbhi.2024.3456478
摘要

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five- fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贲孱完成签到,获得积分10
2秒前
酷炫的毛巾应助雾里青采纳,获得10
4秒前
美丽谷槐完成签到,获得积分10
4秒前
汉堡包应助soul采纳,获得10
4秒前
巴巴塔发布了新的文献求助10
5秒前
7秒前
ommphey完成签到 ,获得积分10
7秒前
7秒前
Euuii完成签到 ,获得积分10
8秒前
轻松的汪汪完成签到,获得积分10
8秒前
sora完成签到,获得积分10
9秒前
FJ完成签到,获得积分10
11秒前
叶松发布了新的文献求助10
12秒前
嗒嗒嗒薇完成签到 ,获得积分10
12秒前
专注黄豆完成签到 ,获得积分10
12秒前
Levon完成签到 ,获得积分10
13秒前
13秒前
瑾瑜完成签到 ,获得积分10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李爱国应助Shi采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得30
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
xxfsx应助科研通管家采纳,获得10
18秒前
Zx_1993应助科研通管家采纳,获得20
18秒前
Orange应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
Sjk发布了新的文献求助10
18秒前
英姑应助科研小丑采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379465
求助须知:如何正确求助?哪些是违规求助? 4503814
关于积分的说明 14016664
捐赠科研通 4412588
什么是DOI,文献DOI怎么找? 2423880
邀请新用户注册赠送积分活动 1416751
关于科研通互助平台的介绍 1394290