SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction

计算机科学 人工智能 图形 模式识别(心理学) 卷积神经网络 特征提取 数据挖掘 机器学习 计算生物学 理论计算机科学 生物
作者
Junliang Shang,Linqian Zhao,Xin He,Xianghan Meng,Limin Zhang,Daohui Ge,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:1
标识
DOI:10.1109/jbhi.2024.3456478
摘要

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five- fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑爱搞科研完成签到,获得积分20
1秒前
1秒前
雪莉完成签到 ,获得积分10
2秒前
科研通AI2S应助重要的道之采纳,获得20
3秒前
醉仙发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
paparazzi221应助科研通管家采纳,获得50
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
无情山水完成签到,获得积分10
8秒前
8秒前
阿鑫发布了新的文献求助10
8秒前
9秒前
weishen完成签到,获得积分10
9秒前
10秒前
一一六完成签到,获得积分10
11秒前
11秒前
Orange应助88C真是太神奇啦采纳,获得10
11秒前
小洁完成签到 ,获得积分10
11秒前
rgaerva应助给我一支西地兰采纳,获得10
12秒前
超级映安发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
JXY发布了新的文献求助10
14秒前
Zooey旎旎完成签到,获得积分10
15秒前
怕孤单的灵竹完成签到,获得积分10
16秒前
luchen发布了新的文献求助10
16秒前
17秒前
咕咕完成签到 ,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825