SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction

计算机科学 人工智能 图形 模式识别(心理学) 卷积神经网络 特征提取 数据挖掘 机器学习 计算生物学 理论计算机科学 生物
作者
Junliang Shang,Linqian Zhao,Xin He,Xianghan Meng,Limin Zhang,Daohui Ge,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:2
标识
DOI:10.1109/jbhi.2024.3456478
摘要

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five- fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
科研通AI5应助ceicic采纳,获得10
6秒前
雨天完成签到,获得积分20
7秒前
不爱吃西葫芦完成签到 ,获得积分10
7秒前
hhc发布了新的文献求助10
8秒前
月林旭发布了新的文献求助10
8秒前
calphen发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
14秒前
14秒前
15秒前
15秒前
研友_8Y26PL发布了新的文献求助10
16秒前
16秒前
ZLX发布了新的文献求助10
16秒前
SYLH应助滕皓轩采纳,获得30
17秒前
嘉心糖完成签到,获得积分0
18秒前
18秒前
谷安发布了新的文献求助30
19秒前
20秒前
星辉斑斓发布了新的文献求助10
20秒前
LLL发布了新的文献求助10
21秒前
22秒前
辛勤的滑板完成签到,获得积分10
23秒前
ceicic发布了新的文献求助10
23秒前
SinaYork完成签到 ,获得积分10
24秒前
25秒前
科研通AI5应助ZAL采纳,获得30
25秒前
JAsoli发布了新的文献求助10
26秒前
单薄碧灵完成签到 ,获得积分10
26秒前
晓莹完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
田様应助清蒸采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432