清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction

计算机科学 人工智能 图形 模式识别(心理学) 卷积神经网络 特征提取 数据挖掘 机器学习 计算生物学 理论计算机科学 生物
作者
Junliang Shang,Linqian Zhao,Xin He,Xianghan Meng,Limin Zhang,Daohui Ge,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:2
标识
DOI:10.1109/jbhi.2024.3456478
摘要

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five- fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
袁青寒发布了新的文献求助10
5秒前
zxq完成签到 ,获得积分10
9秒前
灿烂而孤独的八戒完成签到 ,获得积分0
40秒前
lucky完成签到 ,获得积分10
43秒前
绿色猫猫头完成签到 ,获得积分10
1分钟前
CodeCraft应助斯提亚拉采纳,获得10
1分钟前
wrl2023完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Qing完成签到 ,获得积分10
1分钟前
nextconnie完成签到,获得积分10
1分钟前
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
1分钟前
2分钟前
科研通AI6应助liwen采纳,获得10
2分钟前
2分钟前
龚文亮完成签到,获得积分10
2分钟前
慕青应助狂野宛凝采纳,获得10
3分钟前
常有李完成签到,获得积分10
3分钟前
3分钟前
殷勤的紫槐应助科研通管家采纳,获得200
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
tt完成签到,获得积分10
4分钟前
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
狂野宛凝发布了新的文献求助10
5分钟前
5分钟前
6分钟前
领导范儿应助Gryphon采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Gryphon发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503