计算机科学
人工智能
图形
模式识别(心理学)
卷积神经网络
特征提取
数据挖掘
机器学习
计算生物学
理论计算机科学
生物
作者
Junliang Shang,Linqian Zhao,Xin He,Xianghan Meng,Limin Zhang,Daohui Ge,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-9
被引量:1
标识
DOI:10.1109/jbhi.2024.3456478
摘要
Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five- fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI