已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting lncRNA–Disease Associations Based on a Dual-Path Feature Extraction Network with Multiple Sources of Information Integration

计算机科学 特征提取 节点(物理) 图形 水准点(测量) 数据挖掘 特征(语言学) 特征学习 卷积神经网络 路径(计算) 人工智能 模式识别(心理学) 理论计算机科学 计算机网络 工程类 语言学 哲学 结构工程 大地测量学 地理
作者
Dengju Yao,Kun Liu,Xiaojuan Zhan,Qian Zhang,Xiangkui Li
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (32): 35100-35112
标识
DOI:10.1021/acsomega.4c05365
摘要

Identifying the associations between long noncoding RNAs (lncRNAs) and disease is critical for disease prevention, diagnosis and treatment. However, conducting wet experiments to discover these associations is time-consuming and costly. Therefore, computational modeling for predicting lncRNA-disease associations (LDAs) has become an important alternative. To enhance the accuracy of LDAs prediction and alleviate the issue of node feature oversmoothing when exploring the potential features of nodes using graph neural networks, we introduce DPFELDA, a dual-path feature extraction network that leverages the integration of information from multiple sources to predict LDA. Initially, we establish a dual-view structure of lncRNAs and disease and a heterogeneous network of lncRNA-disease-microRNA (miRNA) interactions. Subsequently, features are extracted using a dual-path feature extraction network. In particular, we employ a combination of a graph convolutional network, a convolutional block attention module, and a node aggregation layer to perform multilayer topology feature extraction for the dual-view structure of lncRNAs and diseases. Additionally, we utilize a Transformer model to construct the node topology feature residual network for obtaining node-specific features in heterogeneous networks. Finally, XGBoost is employed for LDA prediction. The experimental results demonstrate that DPFELDA outperforms the benchmark model on various benchmark data sets. In the course of model exploration, it becomes evident that DPFELDA successfully alleviates the issue of node feature oversmoothing induced by graph-based learning. Ablation experiments confirm the effectiveness of the innovative module, and a case study substantiates the accuracy of DPFELDA model in predicting novel LDAs for characteristic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
共享精神应助活泼稀采纳,获得10
1秒前
Xujiamin完成签到,获得积分10
3秒前
传奇3应助愉快的宛海采纳,获得10
5秒前
赵婧秀发布了新的文献求助80
6秒前
6秒前
wucl1990发布了新的文献求助10
6秒前
7秒前
WeiMooo发布了新的文献求助10
7秒前
研友_VZG7GZ应助自然静芙采纳,获得10
7秒前
小马甲应助虞美人采纳,获得10
9秒前
丁久洋发布了新的文献求助10
11秒前
吕凯强完成签到 ,获得积分10
11秒前
wucl1990完成签到,获得积分20
11秒前
xxxy完成签到,获得积分10
11秒前
可爱的函函应助Esther采纳,获得10
12秒前
李李完成签到,获得积分10
13秒前
14秒前
研友_656B85发布了新的文献求助30
14秒前
所所应助重要的夏烟采纳,获得10
16秒前
17秒前
Lucas应助汤圆采纳,获得10
19秒前
绺妙发布了新的文献求助10
19秒前
李健的小迷弟应助爻解采纳,获得10
20秒前
keke关注了科研通微信公众号
21秒前
21秒前
徐志豪发布了新的文献求助10
22秒前
Johnspeed完成签到,获得积分10
25秒前
Esther完成签到,获得积分10
26秒前
wanci应助菠cai采纳,获得10
26秒前
思源应助赵婧秀采纳,获得10
30秒前
mjsdx完成签到 ,获得积分10
31秒前
32秒前
CodeCraft应助zhixin采纳,获得10
35秒前
35秒前
赘婿应助徐志豪采纳,获得10
35秒前
爻解发布了新的文献求助10
37秒前
棠真完成签到 ,获得积分0
38秒前
小草blue完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629