Device engineering of lead‐free FaCsSnI3/Cs2AgBiI6‐based dual‐absorber perovskite solar cell architecture for powering next‐generation wireless networks

计算机科学 对偶(语法数字) 钙钛矿(结构) 太阳能电池 材料科学 铅(地质) 无线 建筑 光电子学 电信 化学工程 地质学 视觉艺术 艺术 工程类 文学类 地貌学
作者
Smriti Baruah,Janmoni Borah,Paidi Yella Reddy,Chamarthi Sindhupriya,Nara Sathvika,S. Rajasekaran
出处
期刊:International Journal of Communication Systems [Wiley]
标识
DOI:10.1002/dac.5903
摘要

Summary Solar‐powered devices, such as wireless networks, are a crucial component of the Internet of Things (IoT). Designing and creating a solar cell architecture with an extended light absorption regime at a reasonable cost is therefore exceedingly important. All inorganic bismuth‐based Cs 2 AgBiI 6 planar perovskite solar cells (PSCs) have garnered enormous significance due to their exceptional stability against oxygen, heat, and moisture. However, the power conversion efficiencies of Cs 2 AgBiI 6 ‐based planar PSCs remain relatively low, primarily due to their limited light absorption range and interfacial charge recombination losses. This issue can be effectively addressed using a novel multi‐absorber architecture that incorporates dual absorbers with both lower band gap and wider band gap materials. This approach extends the light absorption range, enabling maximal utilization of the solar spectrum. Therefore, this article incorporates numerical modeling and guided optimization of ITO/ETL/Cs 2 AgBiI 6 /Fa 0.75 Cs 0.25 SnI 3 /HTL/Ag dual absorber‐based heterojunction structure to improvise the power conversion efficiency of Cs 2 AgBiI 6 ‐based single‐absorber PSCs. The proposed configuration employs dual perovskite absorber layers (PALs) consisting of wide band gap Cs 2 AgBiI 6 (1.6 eV) as the top absorber layer along with narrow bandgap Fa 0.75 Cs 0.25 SnI 3 (1.27 eV) to act as the bottom absorber layer. Before evaluating the bilayer configuration, two standalone PSC architectures, namely, ITO/ETL/Fa 0.75 Cs 0.25 SnI 3 /HTL/Ag (D1)‐ and ITO/ETL/Cs 2 AgBiI 6 /HTL/Ag (D2)‐based PSC have been simulated and computed to perfectly fit the earlier anticipated state of art results. After effective validation of the photovoltaic parameters of the standalone architectures, both the absorber layers are appraised to constitute a dual active layer configuration ITO/ETL/Cs 2 AgBiI 6 /Fa 0.75 Cs 0.25 SnI 3 /HTL/Ag (D3) maintaining the overall absorber layer width constant to elevate the overall solar cell efficiency. Herein, a combination of various competent hole transport layers (HTLs) such as CBTS, CFTS, Cu 2 O, CuI, CuO, CuSCN, P3HT, PEDOT:PSS, and Spiro‐OMeTAD, as well as electron transport layers (ETLs) like C 60 , CeO 2 , IgZo, PCBM, TiO 2 , WS 2 , and ZnO, are adopted and compared to attain highly efficient bilayer PSC configuration. The crucial variables of all ETL‐ and HTL‐based proposed bilayer solar cell configurations including the thickness of PALs, the width of the carrier transport layers, defect densities of transport layers, the effect of operating temperature, series, and shunt resistances have been extensively optimized and tuned to attain preeminent photovoltaic power conversion efficiencies (PCEs) and quantum efficiencies (QEs). It has been well evinced that the proposed configuration with dual‐absorber layers could effectively widen the light absorption regime to the near‐infrared range and thus significantly contribute toward enhanced photovoltaic performance. The simulation results attained with SCAPS showcase the outstanding performance of the proposed dual active layer solar structure obtained with the combination of CuSCN HTL and TiO 2 ETL pair. The work concludes a 35.01% optimized efficient ITO/TiO 2 /Cs 2 AgBiI 6 (PAL‐2)/Fa 0.75 Cs 0.25 SnI 3 (PAL‐1)/CuSCN/Ag bilayer solar cell configuration with enhanced short circuit current density ( J sc ) of 32.24 mA/cm 2 , open circuit voltage ( V oc ) of 1.273 V, and 85.31% fill factor ( FF ) with 0.6‐ and 0.8‐μm PAL‐1 and PAL‐2 width respectively and 10 14 ‐cm −3 defect density under AM1.G solar spectrum illumination with 1000‐W/m 2 light power density. The proposed eco‐friendly solar structure will also help in providing power backup to the next‐generation communication units and devices. Notably the dual‐absorber structure integrating Cs 2 AgBiI 6 and Fa 0.75 Cs 0.25 SnI 3 materials demonstrates significant advantages in quantum efficiency and spectral coverage compared to using either material independently as single absorbers. The proposed model achieves a peak efficiency of approximately 93% across a spectral range of 300–975 nm, surpassing the 90% efficiency obtained with a single Cs 2 AgBiI 6 absorber covering 300–700 nm. Moreover, it exceeds the 89% efficiency achieved by the single Fa 0.75 Cs 0.25 SnI 3 absorber within the 300‐ to 974.5‐nm spectral range. Solar cells play a pivotal role in ensuring the sustainability, reliability, and cost efficiency of powering wireless nodes, especially in remote or environmentally sensitive areas where traditional power sources may be inadequate or unavailable. The proposed PSC, with a PCE of 35.01%, can generate 350.1 watts under standard test conditions. This provides sufficient power to support approximately 70 wireless nodes, including wireless sensor nodes, IoT devices, and others, each consuming approximately 5 watts of power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助cc采纳,获得10
刚刚
刚刚
刚刚
spray完成签到,获得积分10
1秒前
范范完成签到,获得积分20
1秒前
少年发布了新的文献求助10
1秒前
大力鱼发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
shilong.yang完成签到,获得积分10
3秒前
jy发布了新的文献求助10
4秒前
5秒前
5秒前
梦里发布了新的文献求助10
6秒前
falcon完成签到 ,获得积分10
7秒前
劈里啪啦发布了新的文献求助10
8秒前
耿强发布了新的文献求助10
8秒前
科研通AI5应助坚强的樱采纳,获得10
8秒前
陈杰发布了新的文献求助10
8秒前
nozero完成签到,获得积分10
10秒前
澜生发布了新的文献求助10
11秒前
在水一方应助惠惠采纳,获得10
11秒前
852应助zZ采纳,获得10
11秒前
小马甲应助陌路采纳,获得10
12秒前
1335804518完成签到 ,获得积分10
13秒前
13秒前
甜甜醉波完成签到,获得积分10
13秒前
科研通AI2S应助卷卷王采纳,获得10
14秒前
可爱的函函应助梦里采纳,获得10
14秒前
沐晴完成签到,获得积分10
15秒前
入夏完成签到,获得积分10
15秒前
15秒前
15秒前
苏州小北发布了新的文献求助10
16秒前
16秒前
snail完成签到,获得积分10
17秒前
劈里啪啦完成签到,获得积分10
17秒前
wanci应助Jasmine采纳,获得10
18秒前
aoxiangcaizi12完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794