休眠
肺
化学
癌症研究
细胞生物学
生物
内科学
医学
植物
发芽
作者
Azemat Jamshidi‐Parsian,Samir V. Jenkins,Amy Tran,Anna Bragg,R. Eric Davis,Connor Griffin,Eric R. Siegel,Ruud P.M. Dings,Robert J. Griffin,Gunnar Boysen
标识
DOI:10.1016/j.ejphar.2024.176912
摘要
Glutaminase inhibitors are currently being explored as potential treatments for cancer. This study aimed to elucidate the molecular mechanisms underlying the effects of CB-839 on lung tumor cell lines compared to non-tumor cell lines. Viability assays based on NADPH-dependent dehydrogenases activity, ATP energy production, or mitochondrial reductase activity were used to determine that CB-839 caused significant tumor cell specific inhibition of cellular functions. Clonogenic survival assay revealed a dose dependent reduction in clonogenic survival of various lung tumor cells presenting estimated IC50 values between 10 and 90 nM, while no effect on non-tumor cells was observed. CB-839 led to a 20% reduction in glutaminase (GLS1, a mitochondrial enzyme that catalyzes the conversion of glutamine to glutamate) activity, and a dose-dependent reduced glutamine consumption in tumor cells and had no effect on non-tumor cells. Cell cycle analysis showed the CB-839 did not lead to cell cycle arrest. Apoptosis and necrosis assays revealed an only slight increase in apoptosis in tumor cells. Furthermore, a trypan blue exclusion assay revealed about 40% growth reduction in tumor cells at 0.1–1 μM CB-839 treatment. Surprisingly, treated cells resumed normal growth when re-plated in a drug-free medium, demonstrating reversibility. In hypoxic conditions, CB-839's effect on clonogenic survival was amplified in a dose dependent manner consistent with increased role of GLS1 for energy production under hypoxic conditions. In conclusion, these results suggest CB-839 efficacy is linked to temporary and reversible reduction in glutamine utilization suggesting induction of dormancy.
科研通智能强力驱动
Strongly Powered by AbleSci AI