Effect of Pulsed Electric Field on the Drying Kinetics of Apple Slices during Vacuum-Assisted Microwave Drying: Experimental, Mathematical and Computational Intelligence Approaches

材料科学 微波食品加热 动力学 电场 计算机科学 物理 经典力学 电信 量子力学
作者
Mahdi Rashvand,Mohammad Nadimi,Jitendra Paliwal,Hongwei Zhang,Aberham Hailu Feyissa
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (17): 7861-7861
标识
DOI:10.3390/app14177861
摘要

One of the challenges in the drying process is decreasing the drying time while preserving the product quality. This work aimed to assess the impact of pulsed electric field (PEF) treatment with varying specific energy levels (15.2–26.8 kJ/kg) in conjunction with a microwave vacuum dryer (operating at energy levels of 100, 200 and 300 W) on the kinetics of drying apple slices (cv. Gravenstein). The findings demonstrated a notable reduction in the moisture ratio with the application of pulsed electric field treatment. Based on the findings, implementing PEF reduced the drying time from 4.2 to 31.4% compared to the untreated sample. Moreover, two mathematical models (viz. Page and Weibull) and two machine learning techniques (viz. artificial neural network and support vector regression) were used to predict the moisture ratio of the dried samples. Page’s and Weibull’s models predicted the moisture ratios with R2 = 0.958 and 0.970, respectively. The optimal topology of machine learning to predict the moisture ratio was derived based on the influential parameters within the artificial neural network (i.e., training algorithm, transfer function and hidden layer neurons) and support vector regression (kernel function). The performance of the artificial neural network (R2 = 0.998, RMSE = 0.038 and MAE = 0.024) surpassed that of support vector regression (R2 = 0.994, RMSE = 0.012 and MAE = 0.009). Overall, the machine learning approach outperformed the mathematical models in terms of performance. Hence, machine learning can be used effectively for both predicting the moisture ratio and facilitating online monitoring and control of the drying processes. Lastly, the attributes of the dried apple slices, including color, mechanical properties and sensory analysis, were evaluated. Drying apple slices using PEF treatment and 100 W of microwave energy not only reduces drying time but also maintains the chemical properties such as the total phenolic content, total flavonoid content, antioxidant activity), vitamin C, color and sensory qualities of the product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的骁发布了新的文献求助10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
chillin应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
风声亦寒应助科研通管家采纳,获得30
3秒前
quhayley应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
xff应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
多喝水发布了新的文献求助50
5秒前
大模型应助hyw采纳,获得10
5秒前
活泼的飞双完成签到,获得积分10
5秒前
Nitric_Oxide应助Luckyz采纳,获得10
5秒前
6秒前
6秒前
ruengyu发布了新的文献求助10
6秒前
桐桐应助坚定的骁采纳,获得10
6秒前
跳跃尔琴发布了新的文献求助10
7秒前
gzw发布了新的文献求助10
7秒前
清心淡如水完成签到,获得积分10
8秒前
9秒前
9秒前
Momo发布了新的文献求助10
9秒前
stuffmatter应助kanuary采纳,获得10
9秒前
wanci应助taotie采纳,获得20
9秒前
健忘溪流发布了新的文献求助10
10秒前
汶南完成签到 ,获得积分10
10秒前
李健应助EK采纳,获得10
11秒前
我要发文章完成签到 ,获得积分10
12秒前
张大猛发布了新的文献求助10
12秒前
12秒前
zhang26xian完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825