Research on English Online Teaching Model Based on Association Rules Driven by Big Data

联想(心理学) 大数据 关联规则学习 数据关联 在线教学 计算机科学 数学教育 数据科学 工程类 心理学 数据挖掘 人工智能 概率逻辑 心理治疗师
作者
Zhuo Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425400178
摘要

In today’s information age, big data has become an indispensable and important resource in various fields, and the education sector is no exception. With the explosive growth of educational data, how to effectively mine and utilize this data to optimize the education and teaching process has become a focus of attention for educators and researchers. Among them, association rule mining, as an important data mining technique, is increasingly widely used in the field of education. This investigation delves into the deployment of association rule mining within the framework of English online teaching models, capitalizing on the burgeoning domain of big data. In the era of exponentially advancing information technology, big data has crystallized as an integral component for educational enhancement in both pedagogical quality and methodologies. Initially, this paper dissects a spectrum of extant teaching paradigms propelled by big data analytics. The discourse then pivots to scrutinize the contemporary landscape and the evolution of English online pedagogy. Employing association rule analysis, the study excavates a trove of significant patterns and linkages from voluminous datasets of online educational activities. The insights gleaned serve as a compass for refining instructional strategies and judiciously distributing educational resources. The empirical evidence underscores the proposition that granular examination of student engagement metrics and scholastic achievement empowers educators to tailor bespoke educational trajectories, thereby amplifying pedagogical efficacy and enriching the academic voyage. Beyond furnishing an avant-garde outlook on English online instruction, the findings proffer a substantive benchmark for e-pedagogy across diverse academic disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨代曼完成签到,获得积分10
刚刚
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
jevon应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
三余完成签到,获得积分10
1秒前
hucchongzi应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
hucchongzi应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
hucchongzi应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
RRR完成签到,获得积分10
2秒前
领导范儿应助兴奋巧凡采纳,获得10
3秒前
4秒前
4秒前
心房子完成签到,获得积分10
4秒前
科研通AI2S应助sssssyq采纳,获得10
5秒前
生动的怜菡完成签到,获得积分10
5秒前
brj发布了新的文献求助10
6秒前
6秒前
6秒前
wyz发布了新的文献求助10
7秒前
小机灵鬼完成签到,获得积分10
7秒前
英姑应助不胜寒采纳,获得10
8秒前
cimu95完成签到,获得积分10
9秒前
小蘑菇应助Nelson采纳,获得10
10秒前
认真路灯完成签到 ,获得积分10
10秒前
情怀应助xiaoziyi666采纳,获得10
10秒前
ZZRR发布了新的文献求助10
10秒前
古德猫宁发布了新的文献求助10
11秒前
Hello应助5Hepburn采纳,获得10
11秒前
r日常发布了新的文献求助10
12秒前
马迦南发布了新的文献求助10
12秒前
范仪彬发布了新的文献求助10
14秒前
HAHA完成签到,获得积分10
14秒前
JamesPei应助生生不息采纳,获得10
17秒前
领导范儿应助生生不息采纳,获得10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248