Role of High-Valence Metal Dissolution in Oxygen Evolution Kinetics of the Advanced FeNiOx Catalysts

催化作用 溶解 动力学 氧气 价(化学) 金属 化学 无机化学 材料科学 化学工程 物理化学 冶金 有机化学 物理 量子力学 工程类
作者
Jun Ke,Jiaxi Zhang,Longhai Zhang,Shunyi He,Chengzhi Zhong,Li Du,Jiajun Huang,Xiaoming Fang,Zhengguo Zhang,Zhiming Cui
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (21): 16363-16373
标识
DOI:10.1021/acscatal.4c04454
摘要

The incorporation of high-valence metals into FeNi-based oxides has been widely accepted as an efficient approach for facilitating the alkaline oxygen evolution reaction (OER), but the corresponding structure–property relationship remains unclear due to the lack of identification of the real structure. In this study, we reveal the surface evolution processes of M-doped FeNi oxides (M is Mo, V, and W) and elucidate the role of M dissolution in enhancing oxygen evolution kinetics. Taking Mo as an example, the high-valence metal Mo was doped into FeNiOx and its leaching behavior was observed during OER. By combining in situ Raman analysis, electrochemical measurement, and first-principles calculation, it was unveiled that the electro-dissolution of Mo, in the form of MoO42–, led to preferential removal of lattice oxygen, thereby facilitating the adsorption step of OH and triggering the lattice oxygen-mediated mechanism for promoting OER. Consequently, the optimized FeNiMoOx displayed an overpotential of only 235 mV to reach 10 mA/cm2 and a 30-fold enhancement in specific activity compared with that of FeNiOx at 1.53 V. Our findings provide a different perspective on the intricate association between dissolution of high-valence metal and alkaline OER performance, elucidating the key role of the dissolution-induced structure change on promoting the OER mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助姑苏老李采纳,获得200
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
Kivala应助88C真是太神奇啦采纳,获得10
1秒前
1秒前
小杨同学应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
小杨同学应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
朱凌娇完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
Mr.Cletus发布了新的文献求助10
2秒前
小二郎应助科研r采纳,获得10
2秒前
2秒前
迷路的尔丝完成签到,获得积分10
2秒前
spencer177完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
666发布了新的文献求助10
4秒前
4秒前
在水一方应助departure采纳,获得10
4秒前
4秒前
5秒前
5秒前
徐昊雯完成签到 ,获得积分10
6秒前
6秒前
赵楠完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771