Archetypal Analysis of Kidney Allograft Biopsies Using Next-generation Sequencing Technology

肾移植 原型 移植 计算生物学 医学 活检 生物 内科学 文学类 艺术
作者
Esteban Cortes Garcia,Alessia Giarraputo,Maud Racapé,Valentin Goutaudier,Cindy Ursule‐Dufait,Pierre de la Grange,Franck Letourneur,Marc Raynaud,Clément Couderau,Fariza Mezine,J. Dagobert,Oriol Bestard,Francesc Moreso,Jean Villard,Fabian Halleck,Magali Giral,Sophie Brouard,Richard Danger,Pierre‐Antoine Gourraud,Marion Rabant,Lionel Couzi,Moglie Le Quintrec,Nassim Kamar,Emmanuel Morélon,François Vrtovsnik,Jean‐Luc Taupin,Renaud Snanoudj,Christophe Legendre,Dany Anglicheau,Klemens Budde,Carmen Lefaucheur,Alexandre Loupy,Olivier Aubert
出处
期刊:Transplantation [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/tp.0000000000005181
摘要

Background. In kidney transplantation, molecular diagnostics may be a valuable approach to improve the precision of the diagnosis. Using next-generation sequencing (NGS), we aimed to identify clinically relevant archetypes. Methods. We conducted an Illumina bulk RNA sequencing on 770 kidney biopsies (540 kidney recipients) collected between 2006 and 2021 from 11 European centers. Differentially expressed genes were determined for 11 Banff lesions. An ElasticNet model was used for feature selection, and 4 machine learning classifiers were trained to predict the probability of presence of the lesions. NGS-based classifiers were used in an unsupervised archetypal analysis to different archetypes. The association of the archetypes with allograft survival was assessed using the iBox risk prediction score. Results. The ElasticNet feature selection reduced the number of the genes from a range of 859–10 830 to a range of 52–867 genes. NGS-based classifiers demonstrated robust performances (precision-recall area under the curves 0.708–0.980) in predicting the Banff lesions. Archetypal analysis revealed 8 distinct phenotypes, each characterized by distinct clinical, immunological, and histological features. Although the archetypes confirmed the well-defined Banff rejection phenotypes for T cell–mediated rejection and antibody-mediated rejection, equivocal histologic antibody-mediated rejection, and borderline diagnoses were reclassified into different archetypes based on their molecular signatures. The 8 NGS-based archetypes displayed distinct allograft survival profiles with incremental graft loss rates between archetypes, ranging from 90% to 56% rates 7 y after evaluation ( P < 0.0001). Conclusions. Using molecular phenotyping, 8 archetypes were identified. These NGS-based archetypes might improve disease characterization, reclassify ambiguous Banff diagnoses, and enable patient-specific risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chang发布了新的文献求助10
1秒前
1秒前
高源伯发布了新的文献求助10
1秒前
1秒前
2秒前
矮小的盼夏完成签到 ,获得积分10
3秒前
3秒前
3秒前
隐形曼青应助娜娜子欧采纳,获得10
4秒前
Wiesen发布了新的文献求助10
5秒前
纪梵希完成签到,获得积分20
5秒前
6秒前
羽翼发布了新的文献求助10
6秒前
7秒前
伊酒发布了新的文献求助10
7秒前
YSL发布了新的文献求助10
7秒前
8秒前
淡淡816完成签到,获得积分10
8秒前
A4发布了新的文献求助10
8秒前
皇甫瑾瑜完成签到,获得积分10
9秒前
贪玩如花发布了新的文献求助10
9秒前
Hello应助meimale采纳,获得10
9秒前
完美世界应助Ray采纳,获得10
10秒前
小二郎应助九元里美采纳,获得10
10秒前
HongJiang完成签到,获得积分10
11秒前
thirteen完成签到 ,获得积分10
11秒前
认真的机器猫完成签到,获得积分10
12秒前
12秒前
Grit完成签到 ,获得积分10
12秒前
syqi发布了新的文献求助20
13秒前
yuyull完成签到,获得积分20
13秒前
14秒前
15秒前
15秒前
小冉不熬夜完成签到 ,获得积分10
15秒前
15秒前
毛豆应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469715
求助须知:如何正确求助?哪些是违规求助? 3062911
关于积分的说明 9080378
捐赠科研通 2753084
什么是DOI,文献DOI怎么找? 1510742
邀请新用户注册赠送积分活动 697987
科研通“疑难数据库(出版商)”最低求助积分说明 697975