MxT: Mamba x Transformer for Image Inpainting

修补 变压器 图像(数学) 计算机科学 计算机视觉 人工智能 电气工程 工程类 电压
作者
Shuang Chen,Amir Atapour-Abarghouei,Haozheng Zhang,Hubert P. H. Shum
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.16126
摘要

Image inpainting, or image completion, is a crucial task in computer vision that aims to restore missing or damaged regions of images with semantically coherent content. This technique requires a precise balance of local texture replication and global contextual understanding to ensure the restored image integrates seamlessly with its surroundings. Traditional methods using Convolutional Neural Networks (CNNs) are effective at capturing local patterns but often struggle with broader contextual relationships due to the limited receptive fields. Recent advancements have incorporated transformers, leveraging their ability to understand global interactions. However, these methods face computational inefficiencies and struggle to maintain fine-grained details. To overcome these challenges, we introduce MxT composed of the proposed Hybrid Module (HM), which combines Mamba with the transformer in a synergistic manner. Mamba is adept at efficiently processing long sequences with linear computational costs, making it an ideal complement to the transformer for handling long-scale data interactions. Our HM facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing the model to reconstruct images with high quality and contextual accuracy. We evaluate MxT on the widely-used CelebA-HQ and Places2-standard datasets, where it consistently outperformed existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助YukiXu采纳,获得10
刚刚
刚刚
jijizz发布了新的文献求助10
刚刚
yyyyy发布了新的文献求助10
刚刚
zhappy发布了新的文献求助20
刚刚
1秒前
稳重的八宝粥完成签到 ,获得积分10
2秒前
2秒前
xx关闭了xx文献求助
2秒前
3秒前
5秒前
6秒前
su发布了新的文献求助10
6秒前
小马甲应助鳗鱼灵寒采纳,获得10
6秒前
calbee发布了新的文献求助10
7秒前
lalala发布了新的文献求助10
8秒前
8秒前
张辰12536完成签到,获得积分10
9秒前
10秒前
程琳发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
88完成签到,获得积分10
11秒前
我是站长才怪应助谭谨川采纳,获得10
11秒前
1233发布了新的文献求助10
12秒前
bismarck7完成签到,获得积分10
12秒前
12秒前
12秒前
田様应助淡淡采白采纳,获得10
12秒前
赖道之发布了新的文献求助10
13秒前
calbee完成签到,获得积分10
13秒前
13秒前
和谐白云完成签到,获得积分10
14秒前
14秒前
14秒前
王w发布了新的文献求助10
15秒前
yyyyy完成签到,获得积分10
16秒前
16秒前
大侠发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808