MxT: Mamba x Transformer for Image Inpainting

修补 变压器 图像(数学) 计算机科学 计算机视觉 人工智能 电气工程 工程类 电压
作者
Shuang Chen,Amir Atapour-Abarghouei,Haozheng Zhang,Hubert P. H. Shum
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.16126
摘要

Image inpainting, or image completion, is a crucial task in computer vision that aims to restore missing or damaged regions of images with semantically coherent content. This technique requires a precise balance of local texture replication and global contextual understanding to ensure the restored image integrates seamlessly with its surroundings. Traditional methods using Convolutional Neural Networks (CNNs) are effective at capturing local patterns but often struggle with broader contextual relationships due to the limited receptive fields. Recent advancements have incorporated transformers, leveraging their ability to understand global interactions. However, these methods face computational inefficiencies and struggle to maintain fine-grained details. To overcome these challenges, we introduce MxT composed of the proposed Hybrid Module (HM), which combines Mamba with the transformer in a synergistic manner. Mamba is adept at efficiently processing long sequences with linear computational costs, making it an ideal complement to the transformer for handling long-scale data interactions. Our HM facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing the model to reconstruct images with high quality and contextual accuracy. We evaluate MxT on the widely-used CelebA-HQ and Places2-standard datasets, where it consistently outperformed existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
进击的PhD应助紧张的惜梦采纳,获得50
刚刚
qaz发布了新的文献求助10
刚刚
刚刚
yangyajie发布了新的文献求助10
1秒前
鱿鱼完成签到,获得积分10
1秒前
852应助TANG采纳,获得10
1秒前
2秒前
2秒前
打工人发布了新的文献求助10
3秒前
4秒前
orixero应助HAHA采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
科研通AI6应助HAHA采纳,获得10
5秒前
传奇3应助陈灵敏采纳,获得10
5秒前
5秒前
鱿鱼发布了新的文献求助10
5秒前
想人陪的忆彤完成签到 ,获得积分10
6秒前
6秒前
7秒前
zyy发布了新的文献求助10
7秒前
7秒前
可爱的函函应助zwl采纳,获得10
8秒前
Damon完成签到 ,获得积分10
9秒前
9秒前
hubery发布了新的文献求助10
9秒前
9秒前
leihaha发布了新的文献求助30
11秒前
FashionBoy应助义气的采文采纳,获得10
11秒前
852应助义气的采文采纳,获得10
11秒前
11秒前
无花果应助义气的采文采纳,获得10
11秒前
12秒前
科研通AI6应助义气的采文采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
Ava应助义气的采文采纳,获得10
12秒前
完美世界应助义气的采文采纳,获得10
12秒前
上官若男应助义气的采文采纳,获得10
12秒前
研友_VZG7GZ应助义气的采文采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901