Sorbitol metabolism plays a key role in the differential accumulation of sugar in two plum cultivars

山梨醇 栽培 新陈代谢 碳水化合物代谢 钥匙(锁) 植物 化学 生物 生物化学 生态学
作者
Mei Du,Linduo Gao,Jun Ren,Xuejun Pan,Yongchao Zhu
出处
期刊:Physiologia Plantarum [Wiley]
卷期号:176 (4) 被引量:3
标识
DOI:10.1111/ppl.14465
摘要

Sugar is vital for plant growth and determines fruit quality via its content and composition. This study explores the differential sugar accumulation in two plum varieties, 'Fengtangli (FTL)' and 'Siyueli (SYL)'. The result showed that 'FTL' fruit displayed higher soluble solids and sugar content at various development stages. Metabolomic analysis indicated increased sorbitol in 'FTL', linked to elevated sorbitol-6-phosphate-dehydrogenase (S6PDH) activity. Transcriptome analysis identified a key gene for sorbitol synthesis, PsS6PDH4, which was significantly higher expressed in 'FTL' than in 'SYL'. The function of the PsS6PDH4 gene was verified in strawberry, apple, and plum fruits using transient overexpression and virus-induced gene silencing techniques. The results showed that overexpression of the PsS6PDH4 gene in strawberry, apple, and plum fruits promoted the accumulation of soluble solids content and sorbitol, while inhibition of the gene reduced soluble solids content and sorbitol content. Meanwhile, analysis of the relationship between PsS6PDH4 gene expression, sorbitol, and soluble solids content in four different plum varieties revealed a significant correlation between PsS6PDH4 gene expression and soluble solids content as well as sorbitol content. This research discovered PsS6PDH4 as a crucial regulator of sugar metabolism in plum, with potential applications in improving fruit sweetness and nutritional value in various fruit species. Understanding these molecular pathways can lead to innovative approaches for enhancing fruit quality, benefiting sustainable agriculture and consumer preferences in the global fruit industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Betsy采纳,获得10
刚刚
共享精神应助LeiX采纳,获得10
1秒前
醍醐不醒完成签到 ,获得积分10
1秒前
7秒前
7秒前
8秒前
10秒前
鸿宇发布了新的文献求助10
11秒前
11秒前
衣裳薄完成签到,获得积分10
12秒前
星星泡饭完成签到,获得积分10
12秒前
13秒前
yyyy发布了新的文献求助10
13秒前
XJYXJY完成签到,获得积分10
13秒前
13秒前
13秒前
当当发布了新的文献求助10
14秒前
15秒前
LeiX发布了新的文献求助10
15秒前
16秒前
16秒前
柚子完成签到,获得积分20
17秒前
yhz_zjut_suda发布了新的文献求助10
18秒前
鸿宇完成签到,获得积分10
18秒前
Orange应助但但采纳,获得10
18秒前
18秒前
DE2022发布了新的文献求助10
19秒前
XJYXJY发布了新的文献求助30
19秒前
浮生完成签到,获得积分10
19秒前
皮代谷发布了新的文献求助10
19秒前
柚子发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
21秒前
22秒前
Hello应助yyyy采纳,获得10
22秒前
You发布了新的文献求助10
23秒前
汉堡包应助peace采纳,获得10
24秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196