Machine learning approaches to identify the link between heavy metal exposure and ischemic stroke using the US NHANES data from 2003 to 2018

缺血性中风 医学 冲程(发动机) 计算机科学 内科学 缺血 工程类 机械工程
作者
Yierpan Zibibula,Gulifeire Tayier,Aierpati Maimaiti,T. Liu,Jun Lü
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1388257
摘要

Purpose There is limited understanding of the link between exposure to heavy metals and ischemic stroke (IS). This research aimed to develop efficient and interpretable machine learning (ML) models to associate the relationship between exposure to heavy metals and IS. Methods The data of this research were obtained from the National Health and Nutrition Examination Survey (US NHANES, 2003–2018) database. Seven ML models were used to identify IS caused by exposure to heavy metals. To assess the strength of the models, we employed 10-fold cross-validation, the area under the curve (AUC), F1 scores, Brier scores, Matthews correlation coefficient (MCC), precision-recall (PR) curves, and decision curve analysis (DCA) curves. Following these tests, the best-performing model was selected. Finally, the DALEX package was used for feature explanation and decision-making visualization. Results A total of 15,575 participants were involved in this study. The best-performing ML models, which included logistic regression (LR) (AUC: 0.796) and XGBoost (AUC: 0.789), were selected. The DALEX package revealed that age, total mercury in blood, poverty-to-income ratio (PIR), and cadmium were the most significant contributors to IS in the logistic regression and XGBoost models. Conclusion The logistic regression and XGBoost models showed high efficiency, accuracy, and robustness in identifying associations between heavy metal exposure and IS in NHANES 2003–2018 participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的洋葱完成签到,获得积分10
1秒前
阳光万声完成签到 ,获得积分10
1秒前
求知小生完成签到,获得积分10
2秒前
wangke完成签到,获得积分10
3秒前
mc1220发布了新的文献求助10
4秒前
董卓小蛮腰完成签到,获得积分10
8秒前
黑暗里看世界完成签到,获得积分10
8秒前
街角哭泣完成签到,获得积分10
12秒前
aniver完成签到 ,获得积分10
13秒前
852应助mc1220采纳,获得10
13秒前
英姑应助负责向真采纳,获得10
13秒前
何果果完成签到,获得积分10
16秒前
老朱完成签到,获得积分10
16秒前
19秒前
平常的镜子完成签到,获得积分10
20秒前
alixy完成签到,获得积分10
21秒前
廖元枫发布了新的文献求助30
22秒前
信封完成签到 ,获得积分10
22秒前
玲家傻妞完成签到 ,获得积分10
22秒前
23秒前
搞怪的小粉完成签到,获得积分10
23秒前
24秒前
24秒前
Xiehf完成签到,获得积分10
26秒前
raoxray完成签到 ,获得积分10
27秒前
孤海未蓝完成签到,获得积分10
27秒前
清澄发布了新的文献求助10
27秒前
28秒前
29秒前
万事屋完成签到 ,获得积分10
30秒前
负责向真发布了新的文献求助10
31秒前
蜗牛fei完成签到,获得积分10
32秒前
32秒前
廖元枫完成签到,获得积分10
32秒前
张颜发布了新的文献求助10
35秒前
12完成签到,获得积分10
36秒前
活泼的匕完成签到 ,获得积分10
36秒前
靓丽的花卷完成签到,获得积分10
36秒前
夕荀完成签到,获得积分10
37秒前
SciGPT应助little elvins采纳,获得10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757