Machine learning approaches to identify the link between heavy metal exposure and ischemic stroke using the US NHANES data from 2003 to 2018

缺血性中风 医学 冲程(发动机) 计算机科学 内科学 缺血 工程类 机械工程
作者
Yierpan Zibibula,Gulifeire Tayier,Aierpati Maimaiti,T. Liu,Jun Lü
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1388257
摘要

Purpose There is limited understanding of the link between exposure to heavy metals and ischemic stroke (IS). This research aimed to develop efficient and interpretable machine learning (ML) models to associate the relationship between exposure to heavy metals and IS. Methods The data of this research were obtained from the National Health and Nutrition Examination Survey (US NHANES, 2003–2018) database. Seven ML models were used to identify IS caused by exposure to heavy metals. To assess the strength of the models, we employed 10-fold cross-validation, the area under the curve (AUC), F1 scores, Brier scores, Matthews correlation coefficient (MCC), precision-recall (PR) curves, and decision curve analysis (DCA) curves. Following these tests, the best-performing model was selected. Finally, the DALEX package was used for feature explanation and decision-making visualization. Results A total of 15,575 participants were involved in this study. The best-performing ML models, which included logistic regression (LR) (AUC: 0.796) and XGBoost (AUC: 0.789), were selected. The DALEX package revealed that age, total mercury in blood, poverty-to-income ratio (PIR), and cadmium were the most significant contributors to IS in the logistic regression and XGBoost models. Conclusion The logistic regression and XGBoost models showed high efficiency, accuracy, and robustness in identifying associations between heavy metal exposure and IS in NHANES 2003–2018 participants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
butterflycat完成签到,获得积分10
刚刚
丘比特应助yyy采纳,获得10
刚刚
寻道图强应助MrZKK采纳,获得50
1秒前
1秒前
1秒前
小陈总完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Ava应助果子采纳,获得10
2秒前
77发布了新的文献求助10
3秒前
优秀的夏之完成签到,获得积分10
4秒前
5秒前
许译匀发布了新的文献求助10
6秒前
zhanglinfeng发布了新的文献求助10
7秒前
8秒前
8秒前
蓝兰发布了新的文献求助10
8秒前
曲沉鱼发布了新的文献求助10
10秒前
10秒前
10秒前
orixero应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
拓扑超导相变完成签到 ,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
robert3324应助科研通管家采纳,获得10
12秒前
吼吼应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
nuaa_shy应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721