Machine learning approaches to identify the link between heavy metal exposure and ischemic stroke using the US NHANES data from 2003 to 2018

缺血性中风 医学 冲程(发动机) 计算机科学 内科学 缺血 工程类 机械工程
作者
Yierpan Zibibula,Gulifeire Tayier,Aierpati Maimaiti,T. Liu,Jun Lü
出处
期刊:Frontiers in Public Health [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1388257
摘要

Purpose There is limited understanding of the link between exposure to heavy metals and ischemic stroke (IS). This research aimed to develop efficient and interpretable machine learning (ML) models to associate the relationship between exposure to heavy metals and IS. Methods The data of this research were obtained from the National Health and Nutrition Examination Survey (US NHANES, 2003–2018) database. Seven ML models were used to identify IS caused by exposure to heavy metals. To assess the strength of the models, we employed 10-fold cross-validation, the area under the curve (AUC), F1 scores, Brier scores, Matthews correlation coefficient (MCC), precision-recall (PR) curves, and decision curve analysis (DCA) curves. Following these tests, the best-performing model was selected. Finally, the DALEX package was used for feature explanation and decision-making visualization. Results A total of 15,575 participants were involved in this study. The best-performing ML models, which included logistic regression (LR) (AUC: 0.796) and XGBoost (AUC: 0.789), were selected. The DALEX package revealed that age, total mercury in blood, poverty-to-income ratio (PIR), and cadmium were the most significant contributors to IS in the logistic regression and XGBoost models. Conclusion The logistic regression and XGBoost models showed high efficiency, accuracy, and robustness in identifying associations between heavy metal exposure and IS in NHANES 2003–2018 participants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助赖账的坦克采纳,获得10
2秒前
2秒前
大力沛萍发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助50
5秒前
苹果紊完成签到,获得积分10
5秒前
6秒前
6秒前
Xinxxx应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Lu_ckilly完成签到 ,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
一寒完成签到 ,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
star应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
lili应助科研通管家采纳,获得30
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得150
7秒前
打打应助科研通管家采纳,获得30
7秒前
打打应助科研通管家采纳,获得10
7秒前
昏睡的蟠桃应助科研通管家采纳,获得150
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
卜星凡应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919581
求助须知:如何正确求助?哪些是违规求助? 4191579
关于积分的说明 13017920
捐赠科研通 3961771
什么是DOI,文献DOI怎么找? 2171864
邀请新用户注册赠送积分活动 1189776
关于科研通互助平台的介绍 1098444