Machine learning approaches to identify the link between heavy metal exposure and ischemic stroke using the US NHANES data from 2003 to 2018

缺血性中风 医学 冲程(发动机) 计算机科学 内科学 缺血 工程类 机械工程
作者
Yierpan Zibibula,Gulifeire Tayier,Aierpati Maimaiti,T. Liu,Jun Lü
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fpubh.2024.1388257
摘要

Purpose There is limited understanding of the link between exposure to heavy metals and ischemic stroke (IS). This research aimed to develop efficient and interpretable machine learning (ML) models to associate the relationship between exposure to heavy metals and IS. Methods The data of this research were obtained from the National Health and Nutrition Examination Survey (US NHANES, 2003–2018) database. Seven ML models were used to identify IS caused by exposure to heavy metals. To assess the strength of the models, we employed 10-fold cross-validation, the area under the curve (AUC), F1 scores, Brier scores, Matthews correlation coefficient (MCC), precision-recall (PR) curves, and decision curve analysis (DCA) curves. Following these tests, the best-performing model was selected. Finally, the DALEX package was used for feature explanation and decision-making visualization. Results A total of 15,575 participants were involved in this study. The best-performing ML models, which included logistic regression (LR) (AUC: 0.796) and XGBoost (AUC: 0.789), were selected. The DALEX package revealed that age, total mercury in blood, poverty-to-income ratio (PIR), and cadmium were the most significant contributors to IS in the logistic regression and XGBoost models. Conclusion The logistic regression and XGBoost models showed high efficiency, accuracy, and robustness in identifying associations between heavy metal exposure and IS in NHANES 2003–2018 participants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
天天发布了新的文献求助10
刚刚
1秒前
斑鸠津发布了新的文献求助10
1秒前
李里哩发布了新的文献求助20
1秒前
pups发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
Akim应助晨晨采纳,获得10
1秒前
陈补天完成签到,获得积分10
1秒前
YQW完成签到,获得积分20
2秒前
顾矜应助妮妮采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
CangZm1完成签到 ,获得积分10
4秒前
芳心纵火犯完成签到,获得积分10
4秒前
亦v发布了新的文献求助10
5秒前
微笑发布了新的文献求助10
5秒前
6秒前
Edison完成签到 ,获得积分10
6秒前
科目三应助菠萝西米露采纳,获得10
6秒前
yummy发布了新的文献求助10
6秒前
mm发布了新的文献求助10
6秒前
wtjhhh完成签到,获得积分10
7秒前
宋汶静发布了新的文献求助10
7秒前
kkm发布了新的文献求助10
7秒前
万能图书馆应助Walden采纳,获得10
7秒前
7秒前
奥福少摩发布了新的文献求助30
8秒前
8秒前
zxzxzxzxzx发布了新的文献求助10
8秒前
思源应助道道sy采纳,获得30
9秒前
舒服的糖豆完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450