Orthogonal Capsule Networks With Positional Information Preservation and Lightweight Feature Learning

特征(语言学) 胶囊 计算机科学 人工智能 模式识别(心理学) 地质学 古生物学 哲学 语言学
作者
Yuerong Xue
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3443814
摘要

Both transformer and convolutional neural network (CNN) models require supplementary elements to acquire positional information. To address this issue, we propose a novel orthogonal capsule network (OthogonalCaps) that preserves location information during lightweight feature learning. The proposed network simplifies complex training processes and enables end-to-end training for object detection tasks. Specifically, there is no need to solve the regression problem of positions and the classification problem of objects separately, nor is there a need to encode the positional information as an additional token, as in transformer models. We generate the next capsule layer via orthogonality-based dynamic routing, which reduces the number of parameters and preserves positional information via its voting mechanism. Moreover, we propose Capsule ReLU as an activation function to avoid the problem of gradient vanishing and to facilitate capsule normalization across various scales, thus empowering OrthogonalCaps to better adapt to objects of diverse scales. The orthogonal capsule network (CapsNet) demonstrates an accuracy and run-time performance on a par with those of Faster R-CNN on the VOC dataset. Our network outperforms the baseline approach in detecting small-scale samples. The simulation results suggest that the proposed network surpasses other capsule network models in achieving a favorable balance between parameters and accuracy. Furthermore, an ablation experiment indicates that both Capsule ReLU and orthogonality-based dynamic routing play essential roles in enhancing the classification performance. The training code and pretrained models are available at https://github.com/l1ack/OrthogonalCaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Yara.H采纳,获得10
1秒前
顾矜应助zxvcbnm采纳,获得10
1秒前
怒发5篇sci发布了新的文献求助10
2秒前
2秒前
闪闪发布了新的文献求助10
2秒前
霸气擎宇完成签到,获得积分10
3秒前
Lucas应助怡然雁凡采纳,获得10
3秒前
xx发布了新的文献求助10
3秒前
4秒前
风中的天空完成签到,获得积分10
5秒前
yyymmma发布了新的文献求助10
5秒前
思源应助酒九采纳,获得10
6秒前
xjcy应助拼搏尔风采纳,获得10
7秒前
科目三应助JoaquinH采纳,获得10
7秒前
852应助zjunzero采纳,获得10
7秒前
天天快乐应助小狗同志006采纳,获得10
8秒前
飞翔的霸天哥应助jk445采纳,获得30
8秒前
TRz发布了新的文献求助10
8秒前
9秒前
wxt完成签到 ,获得积分10
10秒前
Dali完成签到,获得积分10
11秒前
现代的若翠完成签到,获得积分10
11秒前
吴学仕完成签到,获得积分10
12秒前
天Q发布了新的文献求助20
12秒前
13秒前
ty心明亮完成签到 ,获得积分10
14秒前
14秒前
15秒前
怒发5篇sci完成签到,获得积分10
15秒前
uvk完成签到,获得积分10
16秒前
漂流瓶完成签到 ,获得积分10
16秒前
求求各位大哥救救小弟我吧完成签到,获得积分10
16秒前
重要寒凡完成签到,获得积分10
17秒前
xx完成签到,获得积分20
17秒前
uvk发布了新的文献求助10
18秒前
爸爸完成签到,获得积分10
18秒前
文艺的曼柔完成签到 ,获得积分10
18秒前
端庄书雁完成签到,获得积分10
19秒前
小二郎应助QE采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847