Orthogonal Capsule Networks With Positional Information Preservation and Lightweight Feature Learning

特征(语言学) 胶囊 计算机科学 人工智能 模式识别(心理学) 地质学 古生物学 哲学 语言学
作者
Yuerong Xue
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3443814
摘要

Both transformer and convolutional neural network (CNN) models require supplementary elements to acquire positional information. To address this issue, we propose a novel orthogonal capsule network (OthogonalCaps) that preserves location information during lightweight feature learning. The proposed network simplifies complex training processes and enables end-to-end training for object detection tasks. Specifically, there is no need to solve the regression problem of positions and the classification problem of objects separately, nor is there a need to encode the positional information as an additional token, as in transformer models. We generate the next capsule layer via orthogonality-based dynamic routing, which reduces the number of parameters and preserves positional information via its voting mechanism. Moreover, we propose Capsule ReLU as an activation function to avoid the problem of gradient vanishing and to facilitate capsule normalization across various scales, thus empowering OrthogonalCaps to better adapt to objects of diverse scales. The orthogonal capsule network (CapsNet) demonstrates an accuracy and run-time performance on a par with those of Faster R-CNN on the VOC dataset. Our network outperforms the baseline approach in detecting small-scale samples. The simulation results suggest that the proposed network surpasses other capsule network models in achieving a favorable balance between parameters and accuracy. Furthermore, an ablation experiment indicates that both Capsule ReLU and orthogonality-based dynamic routing play essential roles in enhancing the classification performance. The training code and pretrained models are available at https://github.com/l1ack/OrthogonalCaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyunan完成签到,获得积分10
1秒前
3秒前
kf033完成签到,获得积分10
4秒前
Akim应助周萌采纳,获得10
6秒前
李健应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
SYLH应助科研通管家采纳,获得15
7秒前
10秒前
LIU完成签到,获得积分10
12秒前
洪焕良发布了新的文献求助10
13秒前
科研通AI5应助典雅的俊驰采纳,获得10
13秒前
mdmdd发布了新的文献求助10
15秒前
如意的听云完成签到,获得积分10
15秒前
@@@发布了新的文献求助10
17秒前
Tim完成签到,获得积分10
18秒前
mdmdd完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
24秒前
qing完成签到,获得积分10
24秒前
洪焕良完成签到,获得积分10
27秒前
Zxc发布了新的文献求助10
27秒前
沉静胜完成签到,获得积分10
29秒前
Gengli发布了新的文献求助30
29秒前
开庆完成签到,获得积分10
30秒前
30秒前
愉快凡旋发布了新的文献求助10
31秒前
tuntunchen完成签到 ,获得积分10
33秒前
Zxc完成签到,获得积分10
34秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975