光热治疗
材料科学
蒸发
能量转换效率
光热效应
化学工程
纳米技术
光电子学
热力学
物理
工程类
作者
Xinyu Jing,Lizhi Chen,Yancai Li,Hongyan Yin,Jiaying Chen,Mengyao Su,Fangfei Liu,Tursun Abdiryim,Xu Feng,Jiangan You,Xiong Liu
出处
期刊:Small
[Wiley]
日期:2024-09-30
标识
DOI:10.1002/smll.202405587
摘要
Abstract Solar‐powered interfacial water evaporation is a promising technique for alleviating freshwater stress. However, the evaporation performance of solar evaporators is still constrained by low photothermal conversion efficiency and high water evaporation enthalpy. Herein, 0D carbon quantum dots (CQDs) are combined with 2D MXene to serve as a hybrid photothermal material to enhance the light absorption and photothermal conversion ability, meanwhile sodium carboxymethyl cellulose (CMC)/polyacrylamide (PAM) hydrogels are used as a substrate material for water transport to reduce the enthalpy of water evaporation. The synergistic effect in 0D CQDs/2D MXene hybrid photothermal materials accelerate the carrier transfer, inducing efficient localized surface plasmon resonance (LSPR) effect. This results in the enhanced photothermal conversion efficiency. The integrated hydrogel evaporators demonstrate a high evaporation rate (1.93 and 2.86 kg m −2 h −1 under 1 and 2 sunlights, respectively) and low evaporation enthalpy (1485 J g −1 ). In addition, the hydrogel evaporators are applied for photothermal sensing and temperature difference power generation (TEG). The TEG device presents an efficient output power density (230.7 mW m −2 ) under 1 sunlight. This work provides a feasible approach for regulating and controlling the evaporation performances of hydrogel evaporators, and gives a proof‐of‐concept for the design of multipurpose solar evaporation systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI