Unsupervised domain adaptive building semantic segmentation network by edge-enhanced contrastive learning

计算机科学 人工智能 分割 领域(数学分析) GSM演进的增强数据速率 模式识别(心理学) 自然语言处理 无监督学习 机器学习 数学 数学分析
作者
Mengyuan Yang,Rui Yang,Shikang Tao,Xin Zhang,Min Wang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106581-106581 被引量:1
标识
DOI:10.1016/j.neunet.2024.106581
摘要

Unsupervised domain adaptation (UDA) is a weakly supervised learning technique that classifies images in the target domain when the source domain has labeled samples, and the target domain has unlabeled samples. Due to the complexity of imaging conditions and the content of remote sensing images, the use of UDA to accurately extract artificial features such as buildings from high-spatial-resolution (HSR) imagery is still challenging. In this study, we propose a new UDA method for building extraction, the contrastive domain adaptation network (CDANet), by utilizing adversarial learning and contrastive learning techniques. CDANet consists of a single multitask generator and dual discriminators. The generator employs a region and edge dual-branch structure that strengthens its edge extraction ability and is beneficial for the extraction of small and densely distributed buildings. The dual discriminators receive the region and edge prediction outputs and achieve multilevel adversarial learning. During adversarial training processing, CDANet aligns the cross-domain of similar pixel features in the embedding space by constructing the regional pixelwise contrastive loss. A self-training (ST) strategy based on pseudolabel generation is further utilized to address the target intradomain discrepancy. Comprehensive experiments are conducted to validate CDANet on three publicly accessible datasets, namely the WHU, Austin, and Massachusetts. Ablation experiments show that the generator network structure, contrastive loss and ST strategy all improve the building extraction accuracy. Method comparisons validate that CDANet achieves superior performance to several state-of-the-art methods, including AdaptSegNet, AdvEnt, IntraDA, FDANet and ADRS, in terms of F1 score and mIoU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助飘飘素晴采纳,获得10
刚刚
LSY完成签到,获得积分10
1秒前
Unshouable完成签到,获得积分10
1秒前
jianglili完成签到,获得积分10
1秒前
8023完成签到,获得积分10
1秒前
嘉星糖完成签到,获得积分10
2秒前
2秒前
黄瓜橙橙发布了新的文献求助10
2秒前
bigfish完成签到,获得积分10
5秒前
勤奋尔冬完成签到 ,获得积分10
6秒前
认真真真真真完成签到,获得积分10
8秒前
10秒前
Cell完成签到 ,获得积分10
11秒前
11秒前
zhuxd完成签到,获得积分10
14秒前
加一完成签到,获得积分10
14秒前
gyf完成签到,获得积分10
15秒前
荣浩宇完成签到,获得积分10
15秒前
功不唐捐完成签到,获得积分10
16秒前
和谐的映梦完成签到,获得积分10
16秒前
16秒前
chi完成签到 ,获得积分10
16秒前
清风完成签到,获得积分10
18秒前
晚意完成签到 ,获得积分10
19秒前
莫愁完成签到,获得积分10
19秒前
WittingGU完成签到,获得积分0
20秒前
忙碌的数学人完成签到,获得积分10
22秒前
zmx发布了新的文献求助10
23秒前
24秒前
因为我从来是那样完成签到,获得积分10
24秒前
SDS完成签到 ,获得积分10
24秒前
飘飘素晴完成签到,获得积分10
25秒前
桐桐应助可露丽采纳,获得10
26秒前
杠赛来完成签到,获得积分10
27秒前
黑海不开灯完成签到 ,获得积分10
28秒前
keke完成签到,获得积分10
28秒前
Jimmybythebay完成签到,获得积分10
28秒前
小九完成签到,获得积分10
29秒前
海德堡完成签到,获得积分10
29秒前
无限的山水完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027