Unsupervised domain adaptive building semantic segmentation network by edge-enhanced contrastive learning

计算机科学 人工智能 分割 领域(数学分析) GSM演进的增强数据速率 模式识别(心理学) 自然语言处理 无监督学习 机器学习 数学 数学分析
作者
Mengyuan Yang,Rui Yang,Shikang Tao,Xin Zhang,Min Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106581-106581 被引量:1
标识
DOI:10.1016/j.neunet.2024.106581
摘要

Unsupervised domain adaptation (UDA) is a weakly supervised learning technique that classifies images in the target domain when the source domain has labeled samples, and the target domain has unlabeled samples. Due to the complexity of imaging conditions and the content of remote sensing images, the use of UDA to accurately extract artificial features such as buildings from high-spatial-resolution (HSR) imagery is still challenging. In this study, we propose a new UDA method for building extraction, the contrastive domain adaptation network (CDANet), by utilizing adversarial learning and contrastive learning techniques. CDANet consists of a single multitask generator and dual discriminators. The generator employs a region and edge dual-branch structure that strengthens its edge extraction ability and is beneficial for the extraction of small and densely distributed buildings. The dual discriminators receive the region and edge prediction outputs and achieve multilevel adversarial learning. During adversarial training processing, CDANet aligns the cross-domain of similar pixel features in the embedding space by constructing the regional pixelwise contrastive loss. A self-training (ST) strategy based on pseudolabel generation is further utilized to address the target intradomain discrepancy. Comprehensive experiments are conducted to validate CDANet on three publicly accessible datasets, namely the WHU, Austin, and Massachusetts. Ablation experiments show that the generator network structure, contrastive loss and ST strategy all improve the building extraction accuracy. Method comparisons validate that CDANet achieves superior performance to several state-of-the-art methods, including AdaptSegNet, AdvEnt, IntraDA, FDANet and ADRS, in terms of F1 score and mIoU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小松松发布了新的文献求助10
刚刚
Akim应助小叶子采纳,获得10
1秒前
1秒前
2秒前
Ashorecc发布了新的文献求助10
2秒前
星辰大海应助Arthur Zhu采纳,获得10
2秒前
大个应助Aurora采纳,获得10
2秒前
2秒前
DI发布了新的文献求助10
2秒前
2秒前
3kou发布了新的文献求助10
3秒前
张丫丫发布了新的文献求助30
3秒前
乐乐应助怡然的盼柳采纳,获得10
3秒前
3秒前
5秒前
6秒前
陈滑溜发布了新的文献求助10
6秒前
6秒前
小川发布了新的文献求助15
6秒前
共享精神应助jojo采纳,获得10
6秒前
7秒前
Jasper应助陈秋采纳,获得10
7秒前
7秒前
lai发布了新的文献求助10
7秒前
8秒前
99giddens举报她可真怪求助涉嫌违规
8秒前
10秒前
烟花应助YuJianQiao采纳,获得10
10秒前
10秒前
CWNU_HAN应助踏实的芸遥采纳,获得30
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Ideal应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127904
求助须知:如何正确求助?哪些是违规求助? 2778820
关于积分的说明 7740291
捐赠科研通 2433951
什么是DOI,文献DOI怎么找? 1293243
科研通“疑难数据库(出版商)”最低求助积分说明 623225
版权声明 600491