亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised domain adaptive building semantic segmentation network by edge-enhanced contrastive learning

计算机科学 人工智能 分割 领域(数学分析) GSM演进的增强数据速率 模式识别(心理学) 自然语言处理 无监督学习 机器学习 数学 数学分析
作者
Mengyuan Yang,Rui Yang,Shikang Tao,Xin Zhang,Min Wang
出处
期刊:Neural Networks [Elsevier]
卷期号:179: 106581-106581 被引量:1
标识
DOI:10.1016/j.neunet.2024.106581
摘要

Unsupervised domain adaptation (UDA) is a weakly supervised learning technique that classifies images in the target domain when the source domain has labeled samples, and the target domain has unlabeled samples. Due to the complexity of imaging conditions and the content of remote sensing images, the use of UDA to accurately extract artificial features such as buildings from high-spatial-resolution (HSR) imagery is still challenging. In this study, we propose a new UDA method for building extraction, the contrastive domain adaptation network (CDANet), by utilizing adversarial learning and contrastive learning techniques. CDANet consists of a single multitask generator and dual discriminators. The generator employs a region and edge dual-branch structure that strengthens its edge extraction ability and is beneficial for the extraction of small and densely distributed buildings. The dual discriminators receive the region and edge prediction outputs and achieve multilevel adversarial learning. During adversarial training processing, CDANet aligns the cross-domain of similar pixel features in the embedding space by constructing the regional pixelwise contrastive loss. A self-training (ST) strategy based on pseudolabel generation is further utilized to address the target intradomain discrepancy. Comprehensive experiments are conducted to validate CDANet on three publicly accessible datasets, namely the WHU, Austin, and Massachusetts. Ablation experiments show that the generator network structure, contrastive loss and ST strategy all improve the building extraction accuracy. Method comparisons validate that CDANet achieves superior performance to several state-of-the-art methods, including AdaptSegNet, AdvEnt, IntraDA, FDANet and ADRS, in terms of F1 score and mIoU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qianyixingchen完成签到 ,获得积分10
5秒前
曦耀发布了新的文献求助30
6秒前
王某完成签到 ,获得积分10
9秒前
9秒前
11秒前
16秒前
务实擎汉完成签到,获得积分10
20秒前
level完成签到 ,获得积分10
22秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
24秒前
26秒前
yuki完成签到 ,获得积分10
31秒前
maolao发布了新的文献求助10
31秒前
TG303完成签到,获得积分10
41秒前
maolao完成签到,获得积分10
42秒前
46秒前
Ava应助小巧寒烟采纳,获得10
47秒前
hqy发布了新的文献求助10
52秒前
动听的莫茗完成签到 ,获得积分20
54秒前
无情小杨完成签到,获得积分20
56秒前
57秒前
李健应助科研通管家采纳,获得10
58秒前
58秒前
打打应助科研通管家采纳,获得30
58秒前
58秒前
动听的莫茗关注了科研通微信公众号
59秒前
epmoct完成签到 ,获得积分10
1分钟前
黄晶晶完成签到 ,获得积分10
1分钟前
Cloud完成签到 ,获得积分10
1分钟前
是清清子z耶完成签到,获得积分10
1分钟前
小豆芽完成签到,获得积分10
1分钟前
1分钟前
小巧寒烟发布了新的文献求助10
1分钟前
Anna完成签到 ,获得积分10
1分钟前
1分钟前
小巧寒烟完成签到,获得积分10
1分钟前
1分钟前
黄晶晶发布了新的文献求助10
1分钟前
2分钟前
ding应助山羊8201采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795