MRI Generated From CT for Acute Ischemic Stroke Combining Radiomics and Generative Adversarial Networks

人工智能 特征(语言学) 计算机科学 串联(数学) 磁共振成像 模式识别(心理学) 光学(聚焦) 放射科 相似性(几何) 医学 病变 图像(数学) 数学 病理 哲学 物理 光学 组合数学 语言学
作者
Eryan Feng,Pinle Qin,Rui Chai,Jianchao Zeng,Qi Wang,Yanfeng Meng,Peng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6047-6057 被引量:19
标识
DOI:10.1109/jbhi.2022.3205961
摘要

Compared to computed tomography (CT), magnetic resonance imaging (MRI) is more sensitive to acute ischemic stroke lesion. However, MRI is time-consuming, expensive, and susceptible to interference from metal implants. Generating MRI images from CT images can address the limitations of MRI. The key problem in the process is obtaining lesion information from CT. In this study, we propose a cross-modal image generation algorithm from CT to MRI for acute ischemic stroke by combining radiomics with generative adversarial networks. First, the lesion candidate region was obtained using radiomics, the radiomic features of the region were extracted, and the feature with the largest information gain was selected and visualized as a feature map. Then, the concatenation of the extracted feature map and the CT image was input in the generator. We added a residual module after the downsampling of the generator, following the general shape of U-Net, which can deepen the network without causing degradation problems. In addition, we introduced the lesion feature similarity loss function to focus the model on the similarity of the lesion. Through the subjective judgment of two experienced radiologists and using evaluation metrics, the results showed that the generated MRI images were very similar to the real MRI images. Moreover, the locations of the lesions were correct, and the shapes of lesions were similar to those of the real lesions, which can help doctors with timely diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静天思完成签到,获得积分10
1秒前
秋半梦发布了新的文献求助10
2秒前
2秒前
2秒前
liangmh发布了新的文献求助10
3秒前
宋德智发布了新的文献求助10
3秒前
澳大利亚马铃薯完成签到,获得积分10
4秒前
沉静天思发布了新的文献求助10
4秒前
谭显芝发布了新的文献求助10
4秒前
不爱干饭发布了新的文献求助10
4秒前
5秒前
杨气罐发布了新的文献求助10
5秒前
敏er好学完成签到,获得积分10
6秒前
开朗广山发布了新的文献求助10
7秒前
Jieao完成签到 ,获得积分10
8秒前
兰心哲发布了新的文献求助40
8秒前
9秒前
9秒前
小鱼发布了新的文献求助10
10秒前
liangmh完成签到,获得积分20
10秒前
Jasper应助祥梦伊飞采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
13秒前
Ava应助满眼星辰采纳,获得10
13秒前
娇羞的猛男完成签到,获得积分20
13秒前
15秒前
欣慰傲薇发布了新的文献求助10
15秒前
17秒前
acihk发布了新的文献求助10
18秒前
耿耿星河发布了新的文献求助10
18秒前
18秒前
21秒前
21秒前
HEIKU应助清爽聋五采纳,获得10
22秒前
22秒前
23秒前
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291