MRI Generated From CT for Acute Ischemic Stroke Combining Radiomics and Generative Adversarial Networks

人工智能 特征(语言学) 计算机科学 串联(数学) 磁共振成像 模式识别(心理学) 光学(聚焦) 放射科 相似性(几何) 医学 病变 图像(数学) 数学 病理 哲学 语言学 物理 组合数学 光学
作者
Eryan Feng,Pinle Qin,Rui Chai,Jianchao Zeng,Qi Wang,Yanfeng Meng,Peng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 6047-6057 被引量:22
标识
DOI:10.1109/jbhi.2022.3205961
摘要

Compared to computed tomography (CT), magnetic resonance imaging (MRI) is more sensitive to acute ischemic stroke lesion. However, MRI is time-consuming, expensive, and susceptible to interference from metal implants. Generating MRI images from CT images can address the limitations of MRI. The key problem in the process is obtaining lesion information from CT. In this study, we propose a cross-modal image generation algorithm from CT to MRI for acute ischemic stroke by combining radiomics with generative adversarial networks. First, the lesion candidate region was obtained using radiomics, the radiomic features of the region were extracted, and the feature with the largest information gain was selected and visualized as a feature map. Then, the concatenation of the extracted feature map and the CT image was input in the generator. We added a residual module after the downsampling of the generator, following the general shape of U-Net, which can deepen the network without causing degradation problems. In addition, we introduced the lesion feature similarity loss function to focus the model on the similarity of the lesion. Through the subjective judgment of two experienced radiologists and using evaluation metrics, the results showed that the generated MRI images were very similar to the real MRI images. Moreover, the locations of the lesions were correct, and the shapes of lesions were similar to those of the real lesions, which can help doctors with timely diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到,获得积分10
刚刚
1秒前
打打应助陈杰采纳,获得10
2秒前
充电宝应助柔弱凡松采纳,获得10
3秒前
Jasmine发布了新的文献求助10
4秒前
5秒前
5秒前
大气的秋完成签到,获得积分10
6秒前
桐桐应助BB采纳,获得10
6秒前
6秒前
6秒前
曙光完成签到,获得积分10
7秒前
7秒前
大方嵩发布了新的文献求助10
8秒前
陌路发布了新的文献求助20
8秒前
Muqi完成签到,获得积分10
8秒前
9秒前
marinemiao发布了新的文献求助10
10秒前
10秒前
丘比特应助wzxxxx采纳,获得10
11秒前
科研通AI5应助飘逸蘑菇采纳,获得10
11秒前
科研通AI2S应助cc采纳,获得10
12秒前
12秒前
12秒前
spray完成签到,获得积分10
13秒前
范范完成签到,获得积分20
13秒前
少年发布了新的文献求助10
13秒前
大力鱼发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
shilong.yang完成签到,获得积分10
15秒前
jy发布了新的文献求助10
16秒前
17秒前
17秒前
梦里发布了新的文献求助10
18秒前
falcon完成签到 ,获得积分10
19秒前
劈里啪啦发布了新的文献求助10
20秒前
耿强发布了新的文献求助10
20秒前
科研通AI5应助坚强的樱采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794