VVBP-tensor-based deep neural network for metal artifact reduction in computed tomography

人工智能 投影(关系代数) 迭代重建 计算机科学 计算机视觉 图像质量 插值(计算机图形学) 剪裁(形态学) 领域(数学分析) 工件(错误) 模式识别(心理学) 图像(数学) 算法 数学 数学分析 哲学 语言学
作者
Manman Zhu,Xianhai Zeng,Qisen Zhu,Yuyan Song,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654201
摘要

The presence of metal often heavily degrades the computed tomography (CT) image quality and inevitably affects the subsequent clinical diagnosis and therapy. With the rapid development of deep learning (DL), a lot of DL-based methods have been proposed for metal artifact reduction (MAR) task in CT imaging, including image domain, projection domain and dual-domain based MAR methods. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is developed as the intermediary domain between image domain and projection domain, while VVBP-Tensor also has many good mathematical properties, such as low-rank property and structural self-similarity. Therefore, we present a VVBP-Tensor based deep neural network (DNN) framework for better MAR performance in CT imaging. Specifically, the original projection is separately pre-processed by the linear interpolation completion algorithm and the clipping algorithm, to quickly remove most metal artifacts and preserve structural information. Then, the clipped projection is restored by one sinogram recovery network to smooth the projection values in and out of the metal trajectory. In addition, two pre-processed projections are separately transferred to two tensors by filtering, backprojecting and sorting, and two sorted tensors are simultaneously rolled into the MAR reconstruction network for further improving reconstructed CT image quality. The proposed method has a good interpretability since the MAR reconstruction network can be considered as a weighted CT image reconstruction process with learnable adaptive weights along the direction of scan views. The superior MAR performance of the presented method is demonstrated on the simulated dataset in terms of qualitative and quantitative measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Keira_Chang发布了新的文献求助20
刚刚
Lucas应助嘿嘿嘿采纳,获得10
刚刚
情怀应助瞿霞采纳,获得10
1秒前
feljqlik完成签到,获得积分10
5秒前
英俊的铭应助wyt1239012采纳,获得10
6秒前
欣喜的薯片完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
QiLe发布了新的文献求助20
9秒前
10秒前
蛋蛋完成签到 ,获得积分10
11秒前
111关注了科研通微信公众号
11秒前
三一完成签到,获得积分10
11秒前
12秒前
每㐬山风发布了新的文献求助10
12秒前
4114完成签到,获得积分10
13秒前
13秒前
嘿嘿嘿发布了新的文献求助10
17秒前
自觉雁玉发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
innocent完成签到 ,获得积分10
20秒前
小白鞋完成签到 ,获得积分10
20秒前
小二郎应助小涛哥采纳,获得10
21秒前
华仔应助饱满的问丝采纳,获得10
22秒前
yegechuanqi发布了新的文献求助10
22秒前
xiaoxuey发布了新的文献求助10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
nowss发布了新的文献求助10
28秒前
牛战士完成签到,获得积分10
28秒前
小蘑菇应助yegechuanqi采纳,获得10
30秒前
小透明完成签到,获得积分0
31秒前
热心市民完成签到 ,获得积分10
32秒前
徐若楠发布了新的文献求助10
33秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564