VVBP-tensor-based deep neural network for metal artifact reduction in computed tomography

人工智能 投影(关系代数) 迭代重建 计算机科学 计算机视觉 图像质量 插值(计算机图形学) 剪裁(形态学) 领域(数学分析) 工件(错误) 模式识别(心理学) 图像(数学) 算法 数学 数学分析 语言学 哲学
作者
Manman Zhu,Xianhai Zeng,Qisen Zhu,Yuyan Song,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654201
摘要

The presence of metal often heavily degrades the computed tomography (CT) image quality and inevitably affects the subsequent clinical diagnosis and therapy. With the rapid development of deep learning (DL), a lot of DL-based methods have been proposed for metal artifact reduction (MAR) task in CT imaging, including image domain, projection domain and dual-domain based MAR methods. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is developed as the intermediary domain between image domain and projection domain, while VVBP-Tensor also has many good mathematical properties, such as low-rank property and structural self-similarity. Therefore, we present a VVBP-Tensor based deep neural network (DNN) framework for better MAR performance in CT imaging. Specifically, the original projection is separately pre-processed by the linear interpolation completion algorithm and the clipping algorithm, to quickly remove most metal artifacts and preserve structural information. Then, the clipped projection is restored by one sinogram recovery network to smooth the projection values in and out of the metal trajectory. In addition, two pre-processed projections are separately transferred to two tensors by filtering, backprojecting and sorting, and two sorted tensors are simultaneously rolled into the MAR reconstruction network for further improving reconstructed CT image quality. The proposed method has a good interpretability since the MAR reconstruction network can be considered as a weighted CT image reconstruction process with learnable adaptive weights along the direction of scan views. The superior MAR performance of the presented method is demonstrated on the simulated dataset in terms of qualitative and quantitative measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好完成签到,获得积分10
1秒前
2秒前
hhzz完成签到,获得积分10
2秒前
2秒前
xhemers完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
3秒前
爱静静应助怡然的莫茗采纳,获得10
4秒前
5秒前
科研通AI5应助清秀的以云采纳,获得30
5秒前
李健的粉丝团团长应助xx采纳,获得10
7秒前
大豪子发布了新的文献求助30
7秒前
李繁蕊发布了新的文献求助10
7秒前
11秒前
11秒前
11秒前
11秒前
橘柚完成签到 ,获得积分10
12秒前
zmmmm发布了新的文献求助10
12秒前
领导范儿应助温言采纳,获得10
12秒前
思源应助OvO采纳,获得10
14秒前
迷糊发布了新的文献求助30
15秒前
LY发布了新的文献求助10
16秒前
zzz完成签到,获得积分10
16秒前
KimJongUn完成签到,获得积分10
16秒前
18秒前
18秒前
zy完成签到,获得积分10
19秒前
开心果子发布了新的文献求助10
19秒前
云痴子完成签到,获得积分10
20秒前
SciGPT应助粥粥采纳,获得10
20秒前
20秒前
20秒前
21秒前
苏源完成签到,获得积分10
21秒前
wu关闭了wu文献求助
21秒前
21秒前
22秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808