已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VVBP-tensor-based deep neural network for metal artifact reduction in computed tomography

人工智能 投影(关系代数) 迭代重建 计算机科学 计算机视觉 图像质量 插值(计算机图形学) 剪裁(形态学) 领域(数学分析) 工件(错误) 模式识别(心理学) 图像(数学) 算法 数学 数学分析 语言学 哲学
作者
Manman Zhu,Xianhai Zeng,Qisen Zhu,Yuyan Song,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654201
摘要

The presence of metal often heavily degrades the computed tomography (CT) image quality and inevitably affects the subsequent clinical diagnosis and therapy. With the rapid development of deep learning (DL), a lot of DL-based methods have been proposed for metal artifact reduction (MAR) task in CT imaging, including image domain, projection domain and dual-domain based MAR methods. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is developed as the intermediary domain between image domain and projection domain, while VVBP-Tensor also has many good mathematical properties, such as low-rank property and structural self-similarity. Therefore, we present a VVBP-Tensor based deep neural network (DNN) framework for better MAR performance in CT imaging. Specifically, the original projection is separately pre-processed by the linear interpolation completion algorithm and the clipping algorithm, to quickly remove most metal artifacts and preserve structural information. Then, the clipped projection is restored by one sinogram recovery network to smooth the projection values in and out of the metal trajectory. In addition, two pre-processed projections are separately transferred to two tensors by filtering, backprojecting and sorting, and two sorted tensors are simultaneously rolled into the MAR reconstruction network for further improving reconstructed CT image quality. The proposed method has a good interpretability since the MAR reconstruction network can be considered as a weighted CT image reconstruction process with learnable adaptive weights along the direction of scan views. The superior MAR performance of the presented method is demonstrated on the simulated dataset in terms of qualitative and quantitative measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
每日洋洋完成签到,获得积分10
2秒前
脑洞疼应助wxpz采纳,获得10
2秒前
燊yy发布了新的文献求助10
3秒前
matteo发布了新的文献求助10
3秒前
希望天下0贩的0应助刘斌采纳,获得10
4秒前
Kaylee发布了新的文献求助10
6秒前
6秒前
百里央禾发布了新的文献求助10
9秒前
10秒前
10秒前
北城完成签到,获得积分20
11秒前
Owen应助无聊的石头剪刀布采纳,获得10
12秒前
研友_Z63kg8完成签到,获得积分10
12秒前
hamburger完成签到,获得积分10
12秒前
鲜艳的可冥关注了科研通微信公众号
13秒前
14秒前
刘斌发布了新的文献求助10
16秒前
嘻嘻的圆完成签到 ,获得积分10
17秒前
水苏完成签到 ,获得积分10
18秒前
钮卿完成签到,获得积分10
18秒前
18秒前
19秒前
沉默的傲安完成签到,获得积分10
20秒前
synlivie发布了新的文献求助10
21秒前
22秒前
wuwuwu发布了新的文献求助50
25秒前
25秒前
曦罱发布了新的文献求助10
25秒前
李健应助沉默的傲安采纳,获得10
25秒前
27秒前
Antares发布了新的文献求助10
29秒前
百里央禾完成签到 ,获得积分10
30秒前
Steven发布了新的文献求助10
30秒前
好好好完成签到 ,获得积分10
32秒前
aa发布了新的文献求助10
32秒前
35秒前
36秒前
37秒前
yhz123完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125773
求助须知:如何正确求助?哪些是违规求助? 2776098
关于积分的说明 7729147
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292132
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380