VVBP-tensor-based deep neural network for metal artifact reduction in computed tomography

人工智能 投影(关系代数) 迭代重建 计算机科学 计算机视觉 图像质量 插值(计算机图形学) 剪裁(形态学) 领域(数学分析) 工件(错误) 模式识别(心理学) 图像(数学) 算法 数学 数学分析 哲学 语言学
作者
Manman Zhu,Xianhai Zeng,Qisen Zhu,Yuyan Song,Yongbo Wang,Jianhua Ma
标识
DOI:10.1117/12.2654201
摘要

The presence of metal often heavily degrades the computed tomography (CT) image quality and inevitably affects the subsequent clinical diagnosis and therapy. With the rapid development of deep learning (DL), a lot of DL-based methods have been proposed for metal artifact reduction (MAR) task in CT imaging, including image domain, projection domain and dual-domain based MAR methods. Recently, view-by-view backprojection tensor (VVBP-Tensor) domain is developed as the intermediary domain between image domain and projection domain, while VVBP-Tensor also has many good mathematical properties, such as low-rank property and structural self-similarity. Therefore, we present a VVBP-Tensor based deep neural network (DNN) framework for better MAR performance in CT imaging. Specifically, the original projection is separately pre-processed by the linear interpolation completion algorithm and the clipping algorithm, to quickly remove most metal artifacts and preserve structural information. Then, the clipped projection is restored by one sinogram recovery network to smooth the projection values in and out of the metal trajectory. In addition, two pre-processed projections are separately transferred to two tensors by filtering, backprojecting and sorting, and two sorted tensors are simultaneously rolled into the MAR reconstruction network for further improving reconstructed CT image quality. The proposed method has a good interpretability since the MAR reconstruction network can be considered as a weighted CT image reconstruction process with learnable adaptive weights along the direction of scan views. The superior MAR performance of the presented method is demonstrated on the simulated dataset in terms of qualitative and quantitative measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助陈曦采纳,获得10
刚刚
如意枫叶发布了新的文献求助10
1秒前
慕青应助蝈蝈采纳,获得10
1秒前
2秒前
3秒前
王小西发布了新的文献求助10
4秒前
4秒前
5秒前
四木完成签到,获得积分10
5秒前
6秒前
努力完成签到,获得积分10
6秒前
小当家发布了新的文献求助10
7秒前
8秒前
帅气冰菱发布了新的文献求助10
8秒前
Dino发布了新的文献求助10
10秒前
11秒前
蝈蝈完成签到,获得积分10
11秒前
11秒前
淡定的松子完成签到,获得积分10
12秒前
帅男发布了新的文献求助10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
半城微凉应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
cherlie应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
安详立果发布了新的文献求助10
13秒前
充电宝应助科研通管家采纳,获得10
14秒前
wdy111应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得20
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
Hollow发布了新的文献求助10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176