Cerebrovascular segmentation in phase-contrast magnetic resonance angiography by a Radon projection composition network

最大强度投影 投影(关系代数) 分割 人工智能 计算机科学 氡变换 计算机视觉 Sørensen–骰子系数 体素 图像分割 磁共振血管造影 模式识别(心理学) 磁共振成像 血管造影 放射科 算法 医学
作者
Wenhai Weng,Hui Ding,Jianjun Bai,Wenjing Zhou,Guangzhi Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:107: 102228-102228 被引量:3
标识
DOI:10.1016/j.compmedimag.2023.102228
摘要

Cerebrovascular segmentation based on phase-contrast magnetic resonance angiography (PC-MRA) provides patient-specific intracranial vascular structures for neurosurgery planning. However, the vascular complex topology and spatial sparsity make the task challenging. Inspired by the computed tomography reconstruction, this paper proposes a Radon Projection Composition Network (RPC-Net) for cerebrovascular segmentation in PC-MRA, aiming to enhance distribution probability of vessels and fully obtain the vascular topological information. Multi-directional Radon projections of the images are introduced and a two-stream network is used to learn the features of the 3D images and projections. The projection domain features are remapped to the 3D image domain by filtered back-projection transform to obtain the image-projection joint features for predicting vessel voxels. A four-fold cross-validation experiment was performed on a local dataset containing 128 PC-MRA scans. The average Dice similarity coefficient, precision and recall of the RPC-Net achieved 86.12%, 85.91% and 86.50%, respectively, while the average completeness and validity of the vessel structure were 85.50% and 92.38%, respectively. The proposed method outperformed the existing methods, especially with significant improvement on the extraction of small and low-intensity vessels. Moreover, the applicability of the segmentation for electrode trajectory planning was also validated. The results demonstrate that the RPC-Net realizes an accurate and complete cerebrovascular segmentation and has potential applications in assisting neurosurgery preoperative planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tooty发布了新的文献求助10
2秒前
XY完成签到 ,获得积分10
4秒前
luzhigang完成签到 ,获得积分10
4秒前
5秒前
樱桃肉丸子完成签到,获得积分10
5秒前
7秒前
乐乐乐乐乐乐应助zhengzhao采纳,获得10
8秒前
CipherSage应助我我我采纳,获得10
9秒前
可爱的函函应助shy采纳,获得10
9秒前
仰山雪完成签到 ,获得积分10
9秒前
保洁王姐完成签到,获得积分10
10秒前
kk7u发布了新的文献求助10
11秒前
bbbbb发布了新的文献求助20
11秒前
12秒前
顾矜应助互为安良采纳,获得10
12秒前
英姑应助拼搏妙竹采纳,获得10
13秒前
嗯哼应助柔弱的半仙采纳,获得10
13秒前
14秒前
西柚发布了新的文献求助10
15秒前
不羡江中仙完成签到 ,获得积分10
16秒前
千寻未央发布了新的文献求助10
17秒前
18秒前
斯文败类应助somls采纳,获得10
19秒前
与一完成签到 ,获得积分10
20秒前
starwan发布了新的文献求助10
20秒前
20秒前
21秒前
小弈发布了新的文献求助20
21秒前
安详的梦旋完成签到,获得积分10
21秒前
22秒前
斯文败类应助智智采纳,获得10
23秒前
应三问完成签到,获得积分10
23秒前
Lialia完成签到 ,获得积分10
24秒前
24秒前
24秒前
cocolu应助pwj采纳,获得10
24秒前
25秒前
kk7u完成签到,获得积分10
27秒前
27秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343110
求助须知:如何正确求助?哪些是违规求助? 2970174
关于积分的说明 8642934
捐赠科研通 2650115
什么是DOI,文献DOI怎么找? 1451132
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407