CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects

光伏 钝化 碲化镉光电 工程物理 纳米技术 材料科学 光电流 光电子学 制作 光伏系统 工程类 图层(电子) 电气工程 医学 替代医学 病理
作者
Michael A. Scarpulla,Brian E. McCandless,Adam B. Phillips,Yanfa Yan,Michael J. Heben,Colin A. Wolden,Gang Xiong,Wyatt K. Metzger,Dan Mao,Dmitry Krasikov,Igor Sankin,Sachit Grover,Amit Munshi,Walajabad Sampath,James R. Sites,Alexandra Bothwell,David S. Albin,Matthew O. Reese,Alessandro Romeo,Marco Nardone,Robert F. Klie,John M. Walls,Thomas Fiducia,Ali Abbas,Sarah M. Hayes
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:255: 112289-112289 被引量:122
标识
DOI:10.1016/j.solmat.2023.112289
摘要

Cadmium telluride (CdTe)-based cells have emerged as the leading commercialized thin film photovoltaic technology and has intrinsically better temperature coefficients, energy yield, and degradation rates than Si technologies. More than 30 GW peak (GWp) of CdTe-based modules are installed worldwide, multiple companies are in production, modules are shipping at up to 18.6% efficiency, and lab cell efficiency is above 22%. We review developments in the science and technology that have occurred over approximately the past decade. These achievements were enabled by manufacturing innovations and scaling module production, as well as maximizing photocurrent through window layer optimization and alloyed CdSexTe1-x (CST) absorbers. Improved chlorine passivation processes, film microstructure, and serendipitous Se defect passivation significantly increased minority carrier lifetime. Efficiencies >22% have been realized for both Cu and As doped CST-based cells. The path to further efficiency gains hinges primarily on increasing open circuit voltage (Voc) and fill factor (FF) through innovations in materials, fabrication methods, and device stacks. Replacing the longstanding Cu doping with As doping is resulting in better module stability and is being translated to large-scale production. To realize 25% efficiency and >1 V Voc, research and development is needed to increase the minority carrier lifetime beyond 100 ns, reduce grain boundary and interface recombination, and tailor band diagrams at the front and back interfaces. Many of these goals have been realized separately however combining them together using scalable manufacturing approaches has been elusive to date. We review these achievements and outstanding opportunities for this remarkable photovoltaic technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑白开水完成签到,获得积分10
刚刚
迷路的芝麻完成签到 ,获得积分10
1秒前
搞怪的紫易完成签到,获得积分10
1秒前
愉快的真应助LLL采纳,获得50
2秒前
always发布了新的文献求助10
2秒前
嗯嗯发布了新的文献求助10
2秒前
生动的煎蛋完成签到,获得积分10
2秒前
2秒前
ss13l完成签到,获得积分10
2秒前
科目三应助Xiaoli_Guo采纳,获得10
3秒前
4秒前
4秒前
4秒前
美丽涵菱完成签到,获得积分10
4秒前
4秒前
5秒前
pwj完成签到,获得积分10
6秒前
劲秉应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
axl完成签到,获得积分10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
klbzw03完成签到,获得积分10
8秒前
小麦完成签到 ,获得积分10
8秒前
8秒前
ECT完成签到,获得积分10
8秒前
今后应助QQ采纳,获得10
9秒前
DHL发布了新的文献求助10
9秒前
always完成签到,获得积分20
9秒前
云ch完成签到,获得积分10
9秒前
bkagyin应助芳芳采纳,获得10
9秒前
haokeyan发布了新的文献求助10
10秒前
沉淀完成签到,获得积分20
10秒前
lulu完成签到,获得积分10
10秒前
天冷了hhhdh举报yn求助涉嫌违规
10秒前
11秒前
月光完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351