An explainable knowledge distillation method with XGBoost for ICU mortality prediction

计算机科学 人工智能 特征工程 机器学习 深度学习 预测建模 多元统计 任务(项目管理) 特征(语言学) 数据挖掘 语言学 哲学 经济 管理
作者
Mucan Liu,Chonghui Guo,Sijia Guo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106466-106466 被引量:15
标识
DOI:10.1016/j.compbiomed.2022.106466
摘要

Mortality prediction is an important task in intensive care unit (ICU) for quantifying the severity of patients’ physiological condition. Currently, scoring systems are widely applied for mortality prediction, while the performance is unsatisfactory in many clinical conditions due to the non-specificity and linearity characteristics of the used model. As the availability of the large volume of data recorded in electronic health records (EHRs), deep learning models have achieved state-of-art predictive performance. However, deep learning models are hard to meet the requirement of explainability in clinical conditions. Hence, an explainable Knowledge Distillation method with XGBoost (XGB-KD) is proposed to improve the predictive performance of XGBoost while supporting better explainability. In this method, we first use outperformed deep learning teacher models to learn the complex patterns hidden in high-dimensional multivariate time series data. Then, we distill knowledge from soft labels generated by the ensemble of teacher models to guide the training of XGBoost student model, whose inputs are meaningful features obtained from feature engineering. Finally, we conduct model calibration to obtain predicted probabilities reflecting the true posterior probabilities and use SHapley Additive exPlanations (SHAP) to obtain insights about the trained model. We conduct comprehensive experiments on MIMIC-III dataset to evaluate our method. The results demonstrate that our method achieves better predictive performance than vanilla XGBoost, deep learning models and several state-of-art baselines from related works. Our method can also provide intuitive explanations. Our method is useful for improving the predictive performance of XGBoost by distilling knowledge from deep learning models and can provide meaningful explanations for predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sciq完成签到,获得积分10
刚刚
jnngshan完成签到,获得积分10
1秒前
3秒前
Squirrel完成签到,获得积分10
3秒前
4秒前
jing216发布了新的文献求助10
6秒前
科研小辣机完成签到 ,获得积分10
6秒前
六烃季铵完成签到,获得积分10
7秒前
乐山乐水应助积极指甲油采纳,获得10
7秒前
Peyton Why发布了新的文献求助30
7秒前
刘平平发布了新的文献求助10
8秒前
嵇南露发布了新的文献求助10
8秒前
ACX完成签到,获得积分10
9秒前
10秒前
FCL完成签到,获得积分10
10秒前
25号底片应助jnngshan采纳,获得100
11秒前
爆米花应助六烃季铵采纳,获得10
13秒前
13秒前
14秒前
民大胡完成签到,获得积分10
14秒前
147258发布了新的文献求助10
15秒前
哈哈发布了新的文献求助10
17秒前
勤劳的人生给勤劳的人生的求助进行了留言
18秒前
科研通AI2S应助baolong采纳,获得10
21秒前
祥子的骆驼完成签到,获得积分10
21秒前
22秒前
悄悄是心上的肖肖完成签到 ,获得积分10
23秒前
domkps完成签到 ,获得积分10
24秒前
月昔完成签到,获得积分10
24秒前
147258完成签到,获得积分20
25秒前
积极的妖丽完成签到,获得积分20
25秒前
25秒前
充电宝应助lily88采纳,获得10
26秒前
26秒前
Shirley应助祥子的骆驼采纳,获得10
26秒前
魁拔蛮吉完成签到 ,获得积分10
28秒前
weiyu_u发布了新的文献求助30
31秒前
Singularity应助147258采纳,获得10
31秒前
科研通AI2S应助俏皮的凝珍采纳,获得10
32秒前
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194