An explainable knowledge distillation method with XGBoost for ICU mortality prediction

计算机科学 人工智能 特征工程 机器学习 深度学习 预测建模 多元统计 任务(项目管理) 特征(语言学) 数据挖掘 语言学 哲学 经济 管理
作者
Mucan Liu,Chonghui Guo,Sijia Guo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106466-106466 被引量:24
标识
DOI:10.1016/j.compbiomed.2022.106466
摘要

Mortality prediction is an important task in intensive care unit (ICU) for quantifying the severity of patients’ physiological condition. Currently, scoring systems are widely applied for mortality prediction, while the performance is unsatisfactory in many clinical conditions due to the non-specificity and linearity characteristics of the used model. As the availability of the large volume of data recorded in electronic health records (EHRs), deep learning models have achieved state-of-art predictive performance. However, deep learning models are hard to meet the requirement of explainability in clinical conditions. Hence, an explainable Knowledge Distillation method with XGBoost (XGB-KD) is proposed to improve the predictive performance of XGBoost while supporting better explainability. In this method, we first use outperformed deep learning teacher models to learn the complex patterns hidden in high-dimensional multivariate time series data. Then, we distill knowledge from soft labels generated by the ensemble of teacher models to guide the training of XGBoost student model, whose inputs are meaningful features obtained from feature engineering. Finally, we conduct model calibration to obtain predicted probabilities reflecting the true posterior probabilities and use SHapley Additive exPlanations (SHAP) to obtain insights about the trained model. We conduct comprehensive experiments on MIMIC-III dataset to evaluate our method. The results demonstrate that our method achieves better predictive performance than vanilla XGBoost, deep learning models and several state-of-art baselines from related works. Our method can also provide intuitive explanations. Our method is useful for improving the predictive performance of XGBoost by distilling knowledge from deep learning models and can provide meaningful explanations for predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助星沉静默采纳,获得10
2秒前
4秒前
李爱国应助淡定海亦采纳,获得10
5秒前
6秒前
7秒前
10秒前
Zjx发布了新的文献求助10
10秒前
成功完成签到,获得积分10
11秒前
14秒前
15秒前
18秒前
wangcc完成签到,获得积分10
19秒前
淡定海亦发布了新的文献求助10
21秒前
21秒前
22秒前
余姓懒发布了新的文献求助10
23秒前
24秒前
青黛发布了新的文献求助10
28秒前
佟彦成发布了新的文献求助10
29秒前
29秒前
今后应助王宇杰采纳,获得10
32秒前
Bighen完成签到 ,获得积分0
38秒前
任性的白玉完成签到 ,获得积分10
42秒前
zz完成签到 ,获得积分10
42秒前
xbchen完成签到,获得积分10
43秒前
温柔以蓝完成签到,获得积分10
46秒前
xbchen发布了新的文献求助10
46秒前
晚风完成签到,获得积分10
47秒前
王宏宇发布了新的文献求助10
48秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
地表飞猪应助科研通管家采纳,获得10
49秒前
luyue9406应助科研通管家采纳,获得10
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
我是老大应助科研通管家采纳,获得10
49秒前
英姑应助科研通管家采纳,获得10
49秒前
科研通AI5应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
luyue9406应助科研通管家采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652