已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Feasible Study of a Deep Learning Model Supporting Human–Machine Collaborative Learning of Object-Oriented Programming

计算机科学 深度学习 人工智能 学习对象 软件部署 教育技术 机器学习 软件工程 数学教育 数学
作者
Feng-Hsu Wang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 413-427 被引量:13
标识
DOI:10.1109/tlt.2022.3226345
摘要

Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in education. In addition, there needs to be more research on applying deep learning technology in education. In this article, we develop an intelligent agent using a performer-based encoder–decoder neural model to classify object-oriented programming (OOP) errors in student code and generate hint feedback in natural language to help students correct the code. This study investigates the feasibility of deploying this agent in an educational setting to support the learning of OOP. This study first examines the low-speed inference problem of the deep learning model. A fast inference algorithm is proposed for the model, which achieves a speedup of eighty times. This study further explores integrating a human–machine collaborative learning process with the deep learning agent. Students were surveyed about their perceptions of the agent in supporting learning. Student responses are interpreted within the learning partnerships model (LPM) framework to show how the agent's technical automation and autonomy features support student-agent learning partnerships. Finally, implications and suggestions for educational application and research of deep learning technology are presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经的完成签到,获得积分10
刚刚
1秒前
牛肉面完成签到 ,获得积分10
2秒前
ceeray23应助计划采纳,获得10
3秒前
Nniu完成签到,获得积分10
4秒前
jzhou65完成签到,获得积分10
7秒前
jzhou65发布了新的文献求助10
11秒前
清逸完成签到 ,获得积分10
11秒前
爱听歌契完成签到 ,获得积分10
11秒前
潘道士完成签到 ,获得积分10
11秒前
努力的宝汁完成签到,获得积分10
12秒前
baihehuakai完成签到 ,获得积分10
13秒前
呆呆完成签到 ,获得积分10
14秒前
27小天使完成签到,获得积分10
16秒前
20秒前
爱读书的嘟嘟完成签到,获得积分10
21秒前
标致雪糕完成签到,获得积分10
21秒前
可爱的函函应助起风了采纳,获得10
23秒前
蓝柚应助xksy采纳,获得10
23秒前
adkdad完成签到,获得积分10
25秒前
Robin发布了新的文献求助10
26秒前
星子发布了新的文献求助10
26秒前
青衫完成签到 ,获得积分10
26秒前
dream完成签到 ,获得积分10
27秒前
27秒前
赘婿应助arrebol采纳,获得30
29秒前
化学课die表完成签到 ,获得积分10
30秒前
30秒前
31秒前
东风徐来完成签到,获得积分10
32秒前
芝士奶盖有点咸完成签到 ,获得积分10
32秒前
芊芊墨客完成签到,获得积分10
33秒前
倒霉的芒果完成签到 ,获得积分10
33秒前
xksy完成签到,获得积分10
34秒前
Jenny完成签到,获得积分10
34秒前
李晓萌发布了新的文献求助10
34秒前
梓念发布了新的文献求助10
34秒前
未尝败绩完成签到,获得积分10
36秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681