A Feasible Study of a Deep Learning Model Supporting Human–Machine Collaborative Learning of Object-Oriented Programming

计算机科学 人工智能 人机交互 机器学习 面向对象程序设计 多媒体 软件工程 程序设计语言
作者
Feng-Hsu Wang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 413-427 被引量:10
标识
DOI:10.1109/tlt.2022.3226345
摘要

Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in education. In addition, there needs to be more research on applying deep learning technology in education. In this article, we develop an intelligent agent using a performer-based encoder–decoder neural model to classify object-oriented programming (OOP) errors in student code and generate hint feedback in natural language to help students correct the code. This study investigates the feasibility of deploying this agent in an educational setting to support the learning of OOP. This study first examines the low-speed inference problem of the deep learning model. A fast inference algorithm is proposed for the model, which achieves a speedup of eighty times. This study further explores integrating a human–machine collaborative learning process with the deep learning agent. Students were surveyed about their perceptions of the agent in supporting learning. Student responses are interpreted within the learning partnerships model (LPM) framework to show how the agent's technical automation and autonomy features support student-agent learning partnerships. Finally, implications and suggestions for educational application and research of deep learning technology are presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助cheunsor采纳,获得10
1秒前
研友_rLmNXn完成签到,获得积分10
2秒前
shen完成签到 ,获得积分10
2秒前
3秒前
隐形曼青应助KINGMach采纳,获得10
4秒前
5秒前
油菜的星星完成签到,获得积分10
5秒前
科研通AI2S应助unborn采纳,获得10
5秒前
田様应助喝粥阿旺采纳,获得10
5秒前
wsququa完成签到,获得积分10
6秒前
wjy发布了新的文献求助10
6秒前
李绵羊发布了新的文献求助30
7秒前
如果多年后完成签到 ,获得积分10
7秒前
lnd发布了新的文献求助10
8秒前
zorro发布了新的文献求助10
9秒前
张军辉发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
斯文败类应助南风不竞采纳,获得10
11秒前
13秒前
丘比特应助ZLPY采纳,获得10
15秒前
16秒前
16秒前
18秒前
DrLee完成签到,获得积分10
19秒前
美好冬天发布了新的文献求助10
20秒前
线条完成签到 ,获得积分10
21秒前
22秒前
大模型应助木槿采纳,获得10
23秒前
TAA66发布了新的文献求助10
24秒前
Orange应助lu采纳,获得10
24秒前
lnd完成签到 ,获得积分10
24秒前
CipherSage应助淡定的怜容D采纳,获得10
25秒前
清蒸鱼发布了新的文献求助10
27秒前
29秒前
zho发布了新的文献求助10
30秒前
30秒前
31秒前
32秒前
33秒前
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259657
求助须知:如何正确求助?哪些是违规求助? 2901203
关于积分的说明 8314378
捐赠科研通 2570696
什么是DOI,文献DOI怎么找? 1396601
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631727