缬沙坦
血压
PI3K/AKT/mTOR通路
医学
信号转导
内分泌学
马森三色染色
内科学
药理学
H&E染色
免疫组织化学
化学
生物化学
作者
Weiquan Zeng,Xiuli Zhang,Yao Lu,Ying Wen,Qiurong Xie,Xuan Yang,Shuyu He,Zhi Guo,Jiapeng Li,Aling Shen,Jun Peng
标识
DOI:10.1016/j.biopha.2022.114203
摘要
Neferine exhibits therapeutic effects on anti-hypertension. However, the effect of neferine on hypertensive vascular remodeling remains unexplored. Therefore, the current study was to investigate the effect of neferine on hypertensive vascular remodeling and its underlying mechanisms.Total 30 male spontaneously hypertensive rats (SHRs) were divided randomly into five groups, including SHR, Neferine-L (2.5 mg/kg/day), Neferine-M (5 mg/kg/day), Neferine-H (10 mg/kg/day), and Valsartan (10 mg/kg/day) groups (n = 6 for each group). Wistar Kyoto (WKY) rats were set as control group (n = 6). Noninvasive blood pressure system, ultrasound, hematoxylin and eosin staining, masson trichrome staining were used to detect the blood pressure, pulse wave velocity (PWV), pathological changes and collagen content in abdominal aortas of SHRs. RNA-sequencing and immunohistochemistry(IHC) analyses were used to identify and verify the differentially expressed transcripts and activation of associated signaling pathways in SHRs.Various concentrations of neferine or valsartan treatment substantially reduced the elevation of blood pressure, PWV, and abdominal aortic thickening of SHRs. RNA-sequencing and KEGG analyses recognized 441 differentially expressed transcripts and several enriched pathways (including PI3K/AKT and TGF-β/Smad2/3 signaling pathways) after neferine treatment. Masson trichromatic staining and IHC analysis demonstrated that neferine treatment decreased the collagen content and down-regulated the protein expression of PCNA, collagen I & III, and fibronectin, as well as p-PI3K, p-AKT, TGF-β1 and p-Smad2/3 in abdominal aortic tissues of SHRs.Neferine treatment exhibits therapeutic effects on anti-hypertension and reduces vascular remodeling, as well as suppresses the abnormal activation of multiple signaling pathways, including PI3K/AKT and TGF-β1/Smad2/3 pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI