CFD driven prediction of mean radiant temperature inside an automobile cabin using machine learning

计算流体力学 计算机科学 人工神经网络 模拟 风速 热的 平均绝对百分比误差 均方误差 气流 挡风玻璃 机器学习 人工智能 环境科学 机械工程 数学 工程类 气象学 统计 航空航天工程 物理
作者
Prateek Bandi,Neeraj Paul Manelil,M.P. Maiya,Shaligram Tiwari,T. Arunvel
出处
期刊:Thermal science and engineering progress [Elsevier BV]
卷期号:37: 101619-101619 被引量:17
标识
DOI:10.1016/j.tsep.2022.101619
摘要

The present work describes the effect of various climatic conditions on the thermal environment inside an automobile cabin soaked under direct sunlight. Three-dimensional soaking simulations of the in-cabin flow and heat interactions have been carried out using the commercial solver ANSYS Fluent 18.1. The influence of external climatic conditions has been incorporated into the computations through three parameters, viz. ambient temperature, solar flux, and wind speed. The effects of each of these parameters have been investigated by considering a rich parametric space consisting of different values and combinations of these parameters. The influence of these variables on the thermal environment inside the cabin is described with the help of temperature contours. The MRT at the driver’s location has been evaluated, and its dependence on each of the external climatic parameters is reported. The results from the CFD simulations have been further used to train three supervised machine learning algorithms, viz. linear regression with stochastic gradient descent (LR), random forests (RF), and artificial neural network (ANN) to predict MRT at the driver’s location. The MRT predictions made by these models have also been compared based on the performance metrics such as mean absolute error and Wilcoxon signed-rank test. The machine learning model’s performance has been tested using climatic data of different cities. These results indicated that the machine learning models make predictions above 99% accuracy. This methodology enables MRT estimation without relying on experiments or CFD simulations and subsequently allows better control and automation of automobile air-conditioning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的tying完成签到,获得积分10
刚刚
2秒前
丘比特应助iii采纳,获得10
4秒前
5秒前
6秒前
6秒前
7秒前
ffffftttzq发布了新的文献求助10
9秒前
小叶子发布了新的文献求助10
10秒前
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得20
12秒前
李健应助科研通管家采纳,获得10
12秒前
BG应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
diu应助科研通管家采纳,获得150
12秒前
Estrella应助科研通管家采纳,获得10
12秒前
15秒前
Wind发布了新的文献求助10
15秒前
17秒前
Juvenilesy发布了新的文献求助50
18秒前
杰克李李发布了新的文献求助10
21秒前
22秒前
zqq123驳回了华仔应助
29秒前
超级苗条完成签到,获得积分10
32秒前
33秒前
时笙完成签到 ,获得积分10
33秒前
33秒前
不万能青年关注了科研通微信公众号
33秒前
YY由于求助违规,被管理员扣积分20
33秒前
FashionBoy应助Wind采纳,获得10
35秒前
wqm完成签到,获得积分10
37秒前
zxy发布了新的文献求助10
39秒前
Cecilia_kou发布了新的文献求助10
39秒前
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735955
求助须知:如何正确求助?哪些是违规求助? 3279643
关于积分的说明 10016719
捐赠科研通 2996337
什么是DOI,文献DOI怎么找? 1644024
邀请新用户注册赠送积分活动 781751
科研通“疑难数据库(出版商)”最低求助积分说明 749425