Coverage path planning for kiwifruit picking robots based on deep reinforcement learning

树遍历 网格参考 计算机科学 运动规划 强化学习 人工智能 网格 机器人 路径(计算) 算法 移动机器人 数学 几何学 程序设计语言
作者
Yinchu Wang,Zhi He,Dandan Cao,Li Ma,Kai Li,Liangsheng Jia,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107593-107593 被引量:50
标识
DOI:10.1016/j.compag.2022.107593
摘要

In this paper, a deep reinforcement learning-based path planning method for kiwifruit picking robot coverage is proposed. Compared with existing approaches, the novelty of this paper is twofold. 1. Using a LiDAR to collect the environmental point cloud information of the kiwifruit orchard and construct a two-dimensional grid map. In the process of constructing the map, the fruit coordinate information is collected in real time, and the fruit coordinates are projected onto the grid map to obtain the distribution of kiwifruit in the orchard environment. Combined with the effective picking area of a kiwifruit picking robot, a kiwifruit area division algorithm is proposed, which converts the traditional grid-based coverage path planning into a travelling salesman (TSP) problem of solving the traversal order of each area. 2. An improved deep reinforcement learning algorithm, the re-DQN algorithm, is proposed to solve the traversal order of each region. The model training results show that the algorithm is more effective than the traditional DQN algorithm, completing model convergence to a better solution. The experimental results of kiwifruit orchard navigation show that the coverage path length of the method proposed in this paper is 220.67 m, which is 31.56 % shorter than that of the boustrophedon algorithm. The overall navigation time is 1200 s, which is 35.72 % shorter than that of the boustrophedon algorithm. This shows that the coverage path planning method proposed in this paper can effectively shorten the coverage path of kiwifruit orchards and improve the navigation efficiency of kiwifruit picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的元容完成签到,获得积分10
刚刚
1秒前
luiii给luiii的求助进行了留言
1秒前
gcl发布了新的文献求助20
1秒前
要吃虾饺完成签到,获得积分10
4秒前
LinHan完成签到,获得积分10
5秒前
6秒前
Jiangnj完成签到,获得积分20
6秒前
可靠觅珍应助HIT_C采纳,获得30
8秒前
8秒前
Diego完成签到,获得积分10
9秒前
12秒前
14秒前
15秒前
16秒前
CipherSage应助chai采纳,获得10
16秒前
三百一十四完成签到 ,获得积分10
17秒前
wahhhlt完成签到,获得积分10
18秒前
小学僧完成签到,获得积分10
19秒前
19秒前
小二郎应助孙成成采纳,获得10
21秒前
咸鱼完成签到,获得积分20
22秒前
23秒前
23秒前
科目三应助清爽胡萝卜采纳,获得10
23秒前
苟小兵完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
orixero应助淡淡向日葵采纳,获得10
27秒前
28秒前
XZY发布了新的文献求助10
28秒前
触摸涨停板完成签到,获得积分0
29秒前
留无影发布了新的文献求助10
29秒前
30秒前
美好斓发布了新的文献求助30
33秒前
33秒前
俏皮芷蕊发布了新的文献求助10
34秒前
科研通AI5应助火星上听寒采纳,获得10
35秒前
DENANANA发布了新的文献求助30
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357