Coverage path planning for kiwifruit picking robots based on deep reinforcement learning

树遍历 网格参考 计算机科学 运动规划 强化学习 人工智能 网格 机器人 路径(计算) 算法 移动机器人 数学 几何学 程序设计语言
作者
Yinchu Wang,Zhi He,Dandan Cao,Li Ma,Kai Li,Liangsheng Jia,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107593-107593 被引量:39
标识
DOI:10.1016/j.compag.2022.107593
摘要

In this paper, a deep reinforcement learning-based path planning method for kiwifruit picking robot coverage is proposed. Compared with existing approaches, the novelty of this paper is twofold. 1. Using a LiDAR to collect the environmental point cloud information of the kiwifruit orchard and construct a two-dimensional grid map. In the process of constructing the map, the fruit coordinate information is collected in real time, and the fruit coordinates are projected onto the grid map to obtain the distribution of kiwifruit in the orchard environment. Combined with the effective picking area of a kiwifruit picking robot, a kiwifruit area division algorithm is proposed, which converts the traditional grid-based coverage path planning into a travelling salesman (TSP) problem of solving the traversal order of each area. 2. An improved deep reinforcement learning algorithm, the re-DQN algorithm, is proposed to solve the traversal order of each region. The model training results show that the algorithm is more effective than the traditional DQN algorithm, completing model convergence to a better solution. The experimental results of kiwifruit orchard navigation show that the coverage path length of the method proposed in this paper is 220.67 m, which is 31.56 % shorter than that of the boustrophedon algorithm. The overall navigation time is 1200 s, which is 35.72 % shorter than that of the boustrophedon algorithm. This shows that the coverage path planning method proposed in this paper can effectively shorten the coverage path of kiwifruit orchards and improve the navigation efficiency of kiwifruit picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
森林木完成签到,获得积分10
2秒前
隐形曼青应助jjyna采纳,获得10
3秒前
3秒前
周一斩发布了新的文献求助10
4秒前
灵巧一笑完成签到 ,获得积分10
4秒前
9way完成签到 ,获得积分10
4秒前
6秒前
熏香澡牝完成签到,获得积分10
7秒前
TY发布了新的文献求助10
7秒前
9秒前
瓷小碗发布了新的文献求助10
9秒前
10秒前
11秒前
莫誓发布了新的文献求助10
12秒前
dgg发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
依米医意发布了新的文献求助10
17秒前
xwq完成签到,获得积分10
17秒前
18秒前
CodeCraft应助Zhou采纳,获得30
20秒前
玖藻发布了新的文献求助10
20秒前
healthy完成签到 ,获得积分10
20秒前
21秒前
Rinsana完成签到,获得积分10
21秒前
科研小白发布了新的文献求助10
22秒前
瓷小碗完成签到,获得积分10
22秒前
研途者完成签到,获得积分10
23秒前
DSFSD完成签到,获得积分10
26秒前
研友_Lw44Gn完成签到,获得积分0
27秒前
30秒前
Orange应助不上课不行采纳,获得10
30秒前
skyline完成签到,获得积分20
34秒前
34秒前
不吃香菜完成签到,获得积分10
34秒前
35秒前
36秒前
yong完成签到,获得积分10
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3235988
求助须知:如何正确求助?哪些是违规求助? 2881806
关于积分的说明 8223606
捐赠科研通 2549816
什么是DOI,文献DOI怎么找? 1378598
科研通“疑难数据库(出版商)”最低求助积分说明 648356
邀请新用户注册赠送积分活动 623871