Coverage path planning for kiwifruit picking robots based on deep reinforcement learning

树遍历 网格参考 计算机科学 运动规划 强化学习 人工智能 网格 机器人 路径(计算) 算法 移动机器人 数学 几何学 程序设计语言
作者
Yinchu Wang,Zhi He,Dandan Cao,Li Ma,Kai Li,Liangsheng Jia,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107593-107593 被引量:50
标识
DOI:10.1016/j.compag.2022.107593
摘要

In this paper, a deep reinforcement learning-based path planning method for kiwifruit picking robot coverage is proposed. Compared with existing approaches, the novelty of this paper is twofold. 1. Using a LiDAR to collect the environmental point cloud information of the kiwifruit orchard and construct a two-dimensional grid map. In the process of constructing the map, the fruit coordinate information is collected in real time, and the fruit coordinates are projected onto the grid map to obtain the distribution of kiwifruit in the orchard environment. Combined with the effective picking area of a kiwifruit picking robot, a kiwifruit area division algorithm is proposed, which converts the traditional grid-based coverage path planning into a travelling salesman (TSP) problem of solving the traversal order of each area. 2. An improved deep reinforcement learning algorithm, the re-DQN algorithm, is proposed to solve the traversal order of each region. The model training results show that the algorithm is more effective than the traditional DQN algorithm, completing model convergence to a better solution. The experimental results of kiwifruit orchard navigation show that the coverage path length of the method proposed in this paper is 220.67 m, which is 31.56 % shorter than that of the boustrophedon algorithm. The overall navigation time is 1200 s, which is 35.72 % shorter than that of the boustrophedon algorithm. This shows that the coverage path planning method proposed in this paper can effectively shorten the coverage path of kiwifruit orchards and improve the navigation efficiency of kiwifruit picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
njzhangyanyang完成签到,获得积分10
刚刚
ChiariRay发布了新的文献求助10
1秒前
qhjqljqd发布了新的文献求助10
2秒前
vivi发布了新的文献求助10
3秒前
格子完成签到,获得积分10
3秒前
lxcy0612完成签到,获得积分10
4秒前
yuan完成签到,获得积分10
4秒前
mickiller完成签到,获得积分10
4秒前
宁静致远QY完成签到,获得积分10
4秒前
简单的凡儿完成签到,获得积分10
5秒前
聪慧的石头完成签到,获得积分10
5秒前
ChiariRay完成签到,获得积分10
5秒前
璐璐完成签到 ,获得积分10
6秒前
机智的孤兰完成签到 ,获得积分10
6秒前
绿野仙踪完成签到,获得积分10
6秒前
6秒前
专注的水壶完成签到 ,获得积分10
6秒前
香蕉觅云应助Hydrogen采纳,获得10
7秒前
JamesPei应助ooo采纳,获得10
7秒前
9秒前
喜悦的水云完成签到 ,获得积分10
9秒前
钱念波完成签到,获得积分10
10秒前
逍遥自在完成签到,获得积分10
11秒前
倪小呆完成签到 ,获得积分10
11秒前
13秒前
山神厘子完成签到,获得积分10
13秒前
娇娇大王完成签到,获得积分10
14秒前
Zpear应助qhjqljqd采纳,获得10
15秒前
16秒前
18秒前
xiaxia42完成签到 ,获得积分10
19秒前
小蘑菇应助DIY101采纳,获得10
20秒前
Ashley完成签到 ,获得积分10
21秒前
Hydrogen发布了新的文献求助10
21秒前
Bioflying完成签到,获得积分10
21秒前
23秒前
爆米花应助无限的以亦采纳,获得10
24秒前
曾宪俊完成签到 ,获得积分10
25秒前
QZZ完成签到,获得积分10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671