Coverage path planning for kiwifruit picking robots based on deep reinforcement learning

树遍历 网格参考 计算机科学 运动规划 强化学习 人工智能 网格 机器人 路径(计算) 算法 移动机器人 数学 几何学 程序设计语言
作者
Yinchu Wang,Zhi He,Dandan Cao,Li Ma,Kai Li,Liangsheng Jia,Yongjie Cui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107593-107593 被引量:69
标识
DOI:10.1016/j.compag.2022.107593
摘要

In this paper, a deep reinforcement learning-based path planning method for kiwifruit picking robot coverage is proposed. Compared with existing approaches, the novelty of this paper is twofold. 1. Using a LiDAR to collect the environmental point cloud information of the kiwifruit orchard and construct a two-dimensional grid map. In the process of constructing the map, the fruit coordinate information is collected in real time, and the fruit coordinates are projected onto the grid map to obtain the distribution of kiwifruit in the orchard environment. Combined with the effective picking area of a kiwifruit picking robot, a kiwifruit area division algorithm is proposed, which converts the traditional grid-based coverage path planning into a travelling salesman (TSP) problem of solving the traversal order of each area. 2. An improved deep reinforcement learning algorithm, the re-DQN algorithm, is proposed to solve the traversal order of each region. The model training results show that the algorithm is more effective than the traditional DQN algorithm, completing model convergence to a better solution. The experimental results of kiwifruit orchard navigation show that the coverage path length of the method proposed in this paper is 220.67 m, which is 31.56 % shorter than that of the boustrophedon algorithm. The overall navigation time is 1200 s, which is 35.72 % shorter than that of the boustrophedon algorithm. This shows that the coverage path planning method proposed in this paper can effectively shorten the coverage path of kiwifruit orchards and improve the navigation efficiency of kiwifruit picking robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttqql发布了新的文献求助10
刚刚
寒塘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
浮游应助研友_nVNBVn采纳,获得10
3秒前
3秒前
monster0101发布了新的文献求助80
3秒前
3秒前
HAO发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
浅色凉生发布了新的文献求助10
5秒前
yaruyou发布了新的文献求助10
5秒前
scl发布了新的文献求助10
6秒前
安静幻枫完成签到,获得积分0
6秒前
edddyor完成签到,获得积分10
6秒前
sanages发布了新的文献求助10
7秒前
Sarina发布了新的文献求助10
7秒前
7秒前
cxlhzq发布了新的文献求助10
7秒前
sonny发布了新的文献求助10
8秒前
8秒前
甜蜜的凌旋完成签到,获得积分10
8秒前
9秒前
nn应助Rubus36采纳,获得10
9秒前
yy应助李瑞瑞采纳,获得10
9秒前
10秒前
聪明小羊懒羊羊完成签到,获得积分20
10秒前
vocrious发布了新的文献求助10
10秒前
我想睡觉完成签到,获得积分10
10秒前
shirly发布了新的文献求助10
11秒前
Reese发布了新的文献求助10
11秒前
11秒前
方源发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569