Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology

大麻素 合成生物学 生物技术 合成大麻素 生物 药物发现 代谢工程 生化工程 计算生物学 生物化学 工程类 基因 受体
作者
Mohsen Hesami,Marco Pepe,Austin Baiton,Andrew Maxwell Phineas Jones
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:62: 108074-108074 被引量:46
标识
DOI:10.1016/j.biotechadv.2022.108074
摘要

For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助atropine采纳,获得10
刚刚
2秒前
天御雪完成签到,获得积分10
2秒前
汉堡包应助淡定小懒猪采纳,获得10
2秒前
2秒前
酷波er应助tcy采纳,获得10
3秒前
无花果应助heheha采纳,获得10
3秒前
Aaernan发布了新的文献求助10
3秒前
彭于晏应助wang采纳,获得10
3秒前
5秒前
tsttst发布了新的文献求助10
5秒前
CodeCraft应助小广采纳,获得10
6秒前
手工水饺发布了新的文献求助80
8秒前
9秒前
czq完成签到 ,获得积分10
10秒前
10秒前
田様应助着急的白羊采纳,获得10
10秒前
宜醉宜游宜睡应助河马采纳,获得10
11秒前
淡定小懒猪完成签到,获得积分20
11秒前
11秒前
huanfangchen完成签到,获得积分20
12秒前
樊书南发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
爆米花应助聪明乐巧采纳,获得10
16秒前
机智的天天完成签到,获得积分10
17秒前
18秒前
Orange应助小小橙采纳,获得10
19秒前
su完成签到,获得积分10
19秒前
鲍威发布了新的文献求助10
20秒前
清秀的惜萱完成签到,获得积分20
20秒前
21秒前
yunsww发布了新的文献求助20
21秒前
Storm发布了新的文献求助10
22秒前
22秒前
充电宝应助怡心亭采纳,获得20
22秒前
22秒前
可爱的函函应助手工水饺采纳,获得10
23秒前
24秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084785
求助须知:如何正确求助?哪些是违规求助? 2737877
关于积分的说明 7547149
捐赠科研通 2387454
什么是DOI,文献DOI怎么找? 1265984
科研通“疑难数据库(出版商)”最低求助积分说明 613207
版权声明 598429